6:2 fluorotelomer alcohol biotransformation in an aerobic river sediment system. 2013

Lijie Zhao, and Patrick W Folsom, and Barry W Wolstenholme, and Hongwen Sun, and Ning Wang, and Robert C Buck
MOE Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, China.

The 6:2 FTOH [F(CF(2))(6)CH(2)CH(2)OH] is a major raw material being used to replace 8:2 FTOH [F(CF(2))(8)CH(2)CH(2)OH] to make FTOH-based products for industrial and consumer applications. A novel aerobic sediment experimental system containing 20 g wet sediment and 30 mL aqueous solution was developed to study 6:2 FTOH biotransformation in river sediment. 6:2 FTOH was dosed into the sediment to follow its biotransformation and to analyze transformation products over 100 d. The primary 6:2 FTOH biotransformation in the aerobic sediment system was rapid (T(1/2)<2d). 5:3 acid [F(CF(2))(5)CH(2)CH(2)COOH] was observed as the predominant polyfluorinated acid on day 100 (22.4 mol%), higher than the sum of perfluoropentanoic acid (10.4 mol%), perfluorohexanoic acid (8.4 mol%), and perfluorobutanoic acid (1.5 mol%). Perfluoroheptanoic acid was not observed during 6:2 FTOH biotransformation. The 5:3 acid can be further degraded to 4:3 acid [F(CF(2))(4)CH(2)CH(2)COOH, 2.7 mol%]. This suggests that microbes in the river sediment selectively degraded 6:2 FTOH more toward 5:3 and 4:3 acids compared with soil. Most of the observed 5:3 acid formed bound residues with sediment organic components and can only be quantitatively recovered by post-treatment with NaOH and ENVI-Carbâ„¢ carbon. The 6:2 FTCA [F(CF(2))(6)CH(2)COOH], 6:2 FTUCA [F(CF(2))(5)CF=CHCOOH], 5:2 ketone [F(CF(2))(5)C(O)CH(3)], and 5:2 sFTOH [F(CF(2))(5)CH(OH)CH(3)] were major transient intermediates during 6:2 FTOH biotransformation in the sediment system. These results suggest that if 6:2 FTOH or 6:2 FTOH-based materials were released to the river or marine sediment, poly- and per-fluorinated carboxylates could be produced.

UI MeSH Term Description Entries
D004784 Environmental Monitoring The monitoring of the level of toxins, chemical pollutants, microbial contaminants, or other harmful substances in the environment (soil, air, and water), workplace, or in the bodies of people and animals present in that environment. Monitoring, Environmental,Environmental Surveillance,Surveillance, Environmental
D005466 Fluorocarbons Liquid perfluorinated carbon compounds which may or may not contain a hetero atom such as nitrogen, oxygen or sulfur, but do not contain another halogen or hydrogen atom. This concept includes fluorocarbon emulsions, and fluorocarbon blood substitutes. Perfluorinated and related polyfluorinated chemicals are referred to as PFAS and are defined as chemicals with at least two adjacent carbon atoms, where one carbon is fully fluorinated and the other is at least partially fluorinated. Fluorocarbon,Fluorocarbon Emulsion,Fluorocarbon Emulsions,Fluorotelomer Phosphate Esters,N-Alkyl Perfluoroalkyl Sulfonamido Carboxylates,PFAS Per- and Polyfluoroalkyl Substances,PFC Perfluorinated Chemicals,PFECAs Perfluoropolyether Carboxylic Acids,Per- and Polyfluoroalkyl Substances,Perfluoroalkane Sulfonamides,Perfluoroalkyl Carboxylates,Perfluoroalkyl Ether Carboxylates,Perfluoroalkyl Polyether Carboxylates,Perfluorocarbon,Perfluorocarbons,Perfluoropolyether Carboxylic Acids,Polyfluorocarbons,Fluorinated Telomer Alcohols,Fluoro-Telomer Alcohols,Polyfluorinated Telomer Alcohols,Telomer Fluorocarbons,Acids, Perfluoropolyether Carboxylic,Alcohols, Fluorinated Telomer,Alcohols, Fluoro-Telomer,Alcohols, Polyfluorinated Telomer,Carboxylates, Perfluoroalkyl,Carboxylates, Perfluoroalkyl Ether,Carboxylates, Perfluoroalkyl Polyether,Carboxylic Acids, Perfluoropolyether,Chemicals, PFC Perfluorinated,Emulsion, Fluorocarbon,Emulsions, Fluorocarbon,Esters, Fluorotelomer Phosphate,Ether Carboxylates, Perfluoroalkyl,Fluoro Telomer Alcohols,Fluorocarbons, Telomer,N Alkyl Perfluoroalkyl Sulfonamido Carboxylates,PFAS Per and Polyfluoroalkyl Substances,Per and Polyfluoroalkyl Substances,Perfluorinated Chemicals, PFC,Phosphate Esters, Fluorotelomer,Polyether Carboxylates, Perfluoroalkyl,Sulfonamides, Perfluoroalkane,Telomer Alcohols, Fluorinated,Telomer Alcohols, Polyfluorinated
D000332 Aerobiosis Life or metabolic reactions occurring in an environment containing oxygen. Aerobioses
D001673 Biodegradation, Environmental Elimination of ENVIRONMENTAL POLLUTANTS; PESTICIDES and other waste using living organisms, usually involving intervention of environmental or sanitation engineers. Bioremediation,Phytoremediation,Natural Attenuation, Pollution,Environmental Biodegradation,Pollution Natural Attenuation
D001711 Biotransformation The chemical alteration of an exogenous substance by or in a biological system. The alteration may inactivate the compound or it may result in the production of an active metabolite of an inactive parent compound. The alterations may be divided into METABOLIC DETOXICATION, PHASE I and METABOLIC DETOXICATION, PHASE II.
D014874 Water Pollutants, Chemical Chemical compounds which pollute the water of rivers, streams, lakes, the sea, reservoirs, or other bodies of water. Chemical Water Pollutants,Landfill Leachate,Leachate, Landfill,Pollutants, Chemical Water
D045483 Rivers Large natural streams of FRESH WATER formed by converging tributaries and which empty into a body of water (lake or ocean). Streams,River,Stream
D019015 Geologic Sediments A mass of organic or inorganic solid fragmented material, or the solid fragment itself, that comes from the weathering of rock and is carried by, suspended in, or dropped by air, water, or ice. It refers also to a mass that is accumulated by any other natural agent and that forms in layers on the earth's surface, such as sand, gravel, silt, mud, fill, or loess. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed, p1689) Marine Oil Snow,Sediments, Geologic,Sediments, Marine,Geologic Sediment,Marine Snow,Sediment, Geologic,Marine Oil Snows,Marine Sediment,Marine Sediments,Oil Snow, Marine,Sediment, Marine,Snow, Marine Oil

Related Publications

Lijie Zhao, and Patrick W Folsom, and Barry W Wolstenholme, and Hongwen Sun, and Ning Wang, and Robert C Buck
January 2017, The Science of the total environment,
Lijie Zhao, and Patrick W Folsom, and Barry W Wolstenholme, and Hongwen Sun, and Ning Wang, and Robert C Buck
July 2016, Chemosphere,
Lijie Zhao, and Patrick W Folsom, and Barry W Wolstenholme, and Hongwen Sun, and Ning Wang, and Robert C Buck
October 2013, Environmental science & technology,
Lijie Zhao, and Patrick W Folsom, and Barry W Wolstenholme, and Hongwen Sun, and Ning Wang, and Robert C Buck
April 2020, The Science of the total environment,
Lijie Zhao, and Patrick W Folsom, and Barry W Wolstenholme, and Hongwen Sun, and Ning Wang, and Robert C Buck
April 2014, Environmental science & technology,
Lijie Zhao, and Patrick W Folsom, and Barry W Wolstenholme, and Hongwen Sun, and Ning Wang, and Robert C Buck
August 2010, Chemosphere,
Lijie Zhao, and Patrick W Folsom, and Barry W Wolstenholme, and Hongwen Sun, and Ning Wang, and Robert C Buck
February 2011, Chemosphere,
Lijie Zhao, and Patrick W Folsom, and Barry W Wolstenholme, and Hongwen Sun, and Ning Wang, and Robert C Buck
December 2020, Chemosphere,
Lijie Zhao, and Patrick W Folsom, and Barry W Wolstenholme, and Hongwen Sun, and Ning Wang, and Robert C Buck
January 2010, Chemosphere,
Lijie Zhao, and Patrick W Folsom, and Barry W Wolstenholme, and Hongwen Sun, and Ning Wang, and Robert C Buck
February 2021, Biodegradation,
Copied contents to your clipboard!