Ultraviolet resonance Raman spectroscopy of bacteriorhodopsin. 1990

M M Netto, and S P Fodor, and R A Mathies
Department of Chemistry, University of California, Berkeley 94720.

Ultraviolet resonance Raman spectra of bacteriorhodopsin have been obtained using 229 nm excitation from a hydrogen-shifted neodymium yttrium aluminum garnet (Nd: YAG) laser. High signal-to-noise spectra are observed exhibiting vibrational bands at 762, 877, 1011, 1175, 1356, 1552 and 1617 cm-1 which are assigned to scattering from tryptophan and tyrosine side chains. This demonstrates the feasibility of using UV resonance Raman spectroscopy to monitor aromatic amino acid structural changes during the bacteriorhodopsin photocycle.

UI MeSH Term Description Entries
D007834 Lasers An optical source that emits photons in a coherent beam. Light Amplification by Stimulated Emission of Radiation (LASER) is brought about using devices that transform light of varying frequencies into a single intense, nearly nondivergent beam of monochromatic radiation. Lasers operate in the infrared, visible, ultraviolet, or X-ray regions of the spectrum. Masers,Continuous Wave Lasers,Pulsed Lasers,Q-Switched Lasers,Continuous Wave Laser,Laser,Laser, Continuous Wave,Laser, Pulsed,Laser, Q-Switched,Lasers, Continuous Wave,Lasers, Pulsed,Lasers, Q-Switched,Maser,Pulsed Laser,Q Switched Lasers,Q-Switched Laser
D006217 Halobacterium A genus of HALOBACTERIACEAE whose growth requires a high concentration of salt. Binary fission is by constriction.
D001436 Bacteriorhodopsins Rhodopsins found in the PURPLE MEMBRANE of halophilic archaea such as HALOBACTERIUM HALOBIUM. Bacteriorhodopsins function as an energy transducers, converting light energy into electrochemical energy via PROTON PUMPS. Bacteriorhodopsin
D013059 Spectrum Analysis, Raman Analysis of the intensity of Raman scattering of monochromatic light as a function of frequency of the scattered light. Raman Spectroscopy,Analysis, Raman Spectrum,Raman Optical Activity Spectroscopy,Raman Scattering,Raman Spectrum Analysis,Scattering, Raman,Spectroscopy, Raman
D014466 Ultraviolet Rays That portion of the electromagnetic spectrum immediately below the visible range and extending into the x-ray frequencies. The longer wavelengths (near-UV or biotic or vital rays) are necessary for the endogenous synthesis of vitamin D and are also called antirachitic rays; the shorter, ionizing wavelengths (far-UV or abiotic or extravital rays) are viricidal, bactericidal, mutagenic, and carcinogenic and are used as disinfectants. Actinic Rays,Black Light, Ultraviolet,UV Light,UV Radiation,Ultra-Violet Rays,Ultraviolet Light,Ultraviolet Radiation,Actinic Ray,Light, UV,Light, Ultraviolet,Radiation, UV,Radiation, Ultraviolet,Ray, Actinic,Ray, Ultra-Violet,Ray, Ultraviolet,Ultra Violet Rays,Ultra-Violet Ray,Ultraviolet Black Light,Ultraviolet Black Lights,Ultraviolet Radiations,Ultraviolet Ray

Related Publications

M M Netto, and S P Fodor, and R A Mathies
February 1977, Nature,
M M Netto, and S P Fodor, and R A Mathies
November 1974, Proceedings of the National Academy of Sciences of the United States of America,
M M Netto, and S P Fodor, and R A Mathies
January 1986, Methods in enzymology,
M M Netto, and S P Fodor, and R A Mathies
October 1979, Biochemistry,
M M Netto, and S P Fodor, and R A Mathies
March 1981, Proceedings of the National Academy of Sciences of the United States of America,
M M Netto, and S P Fodor, and R A Mathies
January 1993, Methods in enzymology,
M M Netto, and S P Fodor, and R A Mathies
January 2008, Photochemistry and photobiology,
M M Netto, and S P Fodor, and R A Mathies
December 1977, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!