Sensitization of human pancreatic cancer cells harboring mutated K-ras to apoptosis. 2012

Ling Shen, and Sung-Hoon Kim, and Chang Yan Chen
Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America.

Pancreatic cancer is a devastating human malignancy and gain of functional mutations in K-ras oncogene is observed in 75%-90% of the patients. Studies have shown that oncogenic ras is not only able to promote cell growth or survival, but also apoptosis, depending upon circumstances. Using pancreatic cancer cell lines with or without expressing mutated K-ras, we demonstrated that the inhibition of endogenous PKC activity sensitized human pancreatic cancer cells (MIA and PANC-1) expressing mutated K-ras to apoptosis, which had no apoptotic effect on BxPC-3 pancreatic cancer cells that contain a normal Ras as well as human lung epithelial BAES-2B cells. In this apoptotic process, the level of ROS was increased and PUMA was upregulated in a p73-dependent fashion in MIA and PANC-1 cells. Subsequently, caspase-3 was cleaved. A full induction of apoptosis required the activation of both ROS- and p73-mediated pathways. The data suggest that PKC is a crucial factor that copes with aberrant K-ras to maintain the homeostasis of the pancreatic cancer cells harboring mutated K-ras. However, the suppression or loss of PKC disrupts the balance and initiates an apoptotic crisis, in which ROS and p73 appear the potential, key targets.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009687 Nuclear Proteins Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus. Nucleolar Protein,Nucleolar Proteins,Nuclear Protein,Protein, Nuclear,Protein, Nucleolar,Proteins, Nuclear,Proteins, Nucleolar
D010190 Pancreatic Neoplasms Tumors or cancer of the PANCREAS. Depending on the types of ISLET CELLS present in the tumors, various hormones can be secreted: GLUCAGON from PANCREATIC ALPHA CELLS; INSULIN from PANCREATIC BETA CELLS; and SOMATOSTATIN from the SOMATOSTATIN-SECRETING CELLS. Most are malignant except the insulin-producing tumors (INSULINOMA). Cancer of Pancreas,Pancreatic Cancer,Cancer of the Pancreas,Neoplasms, Pancreatic,Pancreas Cancer,Pancreas Neoplasms,Pancreatic Acinar Carcinoma,Pancreatic Carcinoma,Acinar Carcinoma, Pancreatic,Acinar Carcinomas, Pancreatic,Cancer, Pancreas,Cancer, Pancreatic,Cancers, Pancreas,Cancers, Pancreatic,Carcinoma, Pancreatic,Carcinoma, Pancreatic Acinar,Carcinomas, Pancreatic,Carcinomas, Pancreatic Acinar,Neoplasm, Pancreas,Neoplasm, Pancreatic,Neoplasms, Pancreas,Pancreas Cancers,Pancreas Neoplasm,Pancreatic Acinar Carcinomas,Pancreatic Cancers,Pancreatic Carcinomas,Pancreatic Neoplasm
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D011518 Proto-Oncogene Proteins Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity. Cellular Proto-Oncogene Proteins,c-onc Proteins,Proto Oncogene Proteins, Cellular,Proto-Oncogene Products, Cellular,Cellular Proto Oncogene Proteins,Cellular Proto-Oncogene Products,Proto Oncogene Products, Cellular,Proto Oncogene Proteins,Proto-Oncogene Proteins, Cellular,c onc Proteins
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000072160 Tumor Protein p73 A homolog of p53 TUMOR SUPPRESSOR PROTEIN that encodes full-length trans-activating and N-terminally-truncated (DeltaN) isoforms. Detection of splice variants and isoforms in the nervous system (human TELENCEPHALON, CHOROID PLEXUS; CEREBROSPINAL FLUID), embryonic tissue, human BREAST CANCER; OVARIAN CANCER, suggest roles in cellular differentiation. Protein p73,TP73 Protein,Tap73 Protein, Human,Tumor Suppressor Protein p73,p73 Protein,p73-alpha,p73-beta,Human Tap73 Protein,Protein p73, Tumor,Protein, Human Tap73,Protein, TP73,Protein, p73,p73 alpha,p73 beta,p73, Protein,p73, Tumor Protein
D015689 Oncogene Protein p21(ras) Transforming protein encoded by ras oncogenes. Point mutations in the cellular ras gene (c-ras) can also result in a mutant p21 protein that can transform mammalian cells. Oncogene protein p21(ras) has been directly implicated in human neoplasms, perhaps accounting for as much as 15-20% of all human tumors. This enzyme was formerly listed as EC 3.6.1.47. p21(v-Ha-ras),p21(v-Ki-ras),ras Oncogene Protein p21,p21 Transforming Viral Protein,p21 v-H-ras,p21 v-Ha-ras,p21 v-Ki-ras,p21 v-ras,p21(v-H-ras),p21(v-K-ras),ras Oncogene Product p21,ras Oncogene p21 Product,p21 v H ras,p21 v Ha ras,p21 v Ki ras,p21 v ras,v-H-ras, p21,v-Ha-ras, p21,v-Ki-ras, p21,v-ras, p21
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis

Related Publications

Ling Shen, and Sung-Hoon Kim, and Chang Yan Chen
January 2014, Pathology oncology research : POR,
Ling Shen, and Sung-Hoon Kim, and Chang Yan Chen
January 2001, Pancreatology : official journal of the International Association of Pancreatology (IAP) ... [et al.],
Ling Shen, and Sung-Hoon Kim, and Chang Yan Chen
May 2005, Ai zheng = Aizheng = Chinese journal of cancer,
Ling Shen, and Sung-Hoon Kim, and Chang Yan Chen
March 1994, Pancreas,
Ling Shen, and Sung-Hoon Kim, and Chang Yan Chen
February 1999, International journal of cancer,
Ling Shen, and Sung-Hoon Kim, and Chang Yan Chen
November 2008, Translational research : the journal of laboratory and clinical medicine,
Ling Shen, and Sung-Hoon Kim, and Chang Yan Chen
December 1998, Biochemical and biophysical research communications,
Ling Shen, and Sung-Hoon Kim, and Chang Yan Chen
February 2019, The Journal of pharmacy and pharmacology,
Ling Shen, and Sung-Hoon Kim, and Chang Yan Chen
May 2008, Biochemical and biophysical research communications,
Ling Shen, and Sung-Hoon Kim, and Chang Yan Chen
February 2012, Cancer science,
Copied contents to your clipboard!