Filamin isoforms in molluscan smooth muscle. 2012

Lucía Méndez-López, and Ulf Hellman, and Izaskun Ibarguren, and J Antonio Villamarín
Departamento de Bioquímica e Bioloxía Molecular, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain.

The role of filamin in molluscan catch muscles is unknown. In this work three proteins isolated from the posterior adductor muscle of the sea mussel Mytilus galloprovincialis were identified by MALDI-TOF/TOF MS as homologous to mammalian filamin. They were named FLN-270, FLN-230 and FLN-105, according to their apparent molecular weight determined by SDS-PAGE: 270kDa, 230kDa and 105kDa, respectively. Both FLN-270 and FLN-230 contain the C-terminal dimerization domain and the N-terminal actin-binding domain typical of filamins. These findings, together with the data from peptide mass fingerprints, indicate that FLN-270 and FLN-230 are different isoforms of mussel filamin, with FLN-230 being the predominant isoform in the mussel catch muscle. De novo sequencing data revealed structural differences between both filamin isoforms at the rod 2 segment, the one responsible for the interaction of filamin with the most of its binding partners. FLN270 but not FLN230 was phosphorylated in vitro by cAMP-dependent protein kinase. As for the FLN-105, it would be an N-terminal proteolytic fragment generated from the FLN-270 isoform or a C-terminally truncated variant of filamin. On the other hand, a 45-kDa protein that copurifies with mussel catch muscle filamins was identified as the mussel calponin-like protein. The fact that this protein coelutes with the FLN-270 isoform from a gel filtration chromatography suggests a specific interaction between both proteins.

UI MeSH Term Description Entries
D008840 Microfilament Proteins Monomeric subunits of primarily globular ACTIN and found in the cytoplasmic matrix of almost all cells. They are often associated with microtubules and may play a role in cytoskeletal function and/or mediate movement of the cell or the organelles within the cell. Actin Binding Protein,Actin-Binding Protein,Actin-Binding Proteins,Microfilament Protein,Actin Binding Proteins,Binding Protein, Actin,Protein, Actin Binding,Protein, Actin-Binding,Protein, Microfilament,Proteins, Actin-Binding,Proteins, Microfilament
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D003285 Contractile Proteins Proteins which participate in contractile processes. They include MUSCLE PROTEINS as well as those found in other cells and tissues. In the latter, these proteins participate in localized contractile events in the cytoplasm, in motile activity, and in cell aggregation phenomena. Contractile Protein,Protein, Contractile,Proteins, Contractile
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D049878 Mytilus A genus of marine mussels in the family MYTILIDAE, class BIVALVIA. The species MYTILUS EDULIS is the highly edible common mussel.
D019032 Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization A mass spectrometric technique that is used for the analysis of large biomolecules. Analyte molecules are embedded in an excess matrix of small organic molecules that show a high resonant absorption at the laser wavelength used. The matrix absorbs the laser energy, thus inducing a soft disintegration of the sample-matrix mixture into free (gas phase) matrix and analyte molecules and molecular ions. In general, only molecular ions of the analyte molecules are produced, and almost no fragmentation occurs. This makes the method well suited for molecular weight determinations and mixture analysis. Laser Desorption-Ionization Mass Spectrometry, Matrix-Assisted,MALD-MS,MALDI,Mass Spectrometry, Matrix-Assisted Laser Desorption-Ionization,Mass Spectroscopy, Matrix-Assisted Laser Desorption-Ionization,Matrix-Assisted Laser Desorption-Ionization Mass Spectrometry,Spectroscopy, Mass, Matrix-Assisted Laser Desorption-Ionization,MALDI-MS,MS-MALD,SELDI-TOF-MS,Surface Enhanced Laser Desorption Ionization Mass Spectrometry,Laser Desorption Ionization Mass Spectrometry, Matrix Assisted,MALDI MS,Mass Spectrometry, Matrix Assisted Laser Desorption Ionization,Mass Spectroscopy, Matrix Assisted Laser Desorption Ionization,Matrix Assisted Laser Desorption Ionization Mass Spectrometry

Related Publications

Lucía Méndez-López, and Ulf Hellman, and Izaskun Ibarguren, and J Antonio Villamarín
August 2005, Cell motility and the cytoskeleton,
Lucía Méndez-López, and Ulf Hellman, and Izaskun Ibarguren, and J Antonio Villamarín
January 1986, The Journal of cell biology,
Lucía Méndez-López, and Ulf Hellman, and Izaskun Ibarguren, and J Antonio Villamarín
January 1983, Cell and tissue research,
Lucía Méndez-López, and Ulf Hellman, and Izaskun Ibarguren, and J Antonio Villamarín
February 1972, Nihon seirigaku zasshi. Journal of the Physiological Society of Japan,
Lucía Méndez-López, and Ulf Hellman, and Izaskun Ibarguren, and J Antonio Villamarín
October 1976, Physiological reviews,
Lucía Méndez-López, and Ulf Hellman, and Izaskun Ibarguren, and J Antonio Villamarín
September 1959, British journal of pharmacology and chemotherapy,
Lucía Méndez-López, and Ulf Hellman, and Izaskun Ibarguren, and J Antonio Villamarín
March 2016, Cell reports,
Lucía Méndez-López, and Ulf Hellman, and Izaskun Ibarguren, and J Antonio Villamarín
March 1981, Journal of pharmacobio-dynamics,
Lucía Méndez-López, and Ulf Hellman, and Izaskun Ibarguren, and J Antonio Villamarín
July 1960, The Journal of physiology,
Lucía Méndez-López, and Ulf Hellman, and Izaskun Ibarguren, and J Antonio Villamarín
June 1983, Japanese journal of pharmacology,
Copied contents to your clipboard!