Isolation and separation of the glycan strands from murein of Escherichia coli by reversed-phase high-performance liquid chromatography. 1990

H Harz, and K Burgdorf, and J V Höltje
Max-Planck-Institut für Entwicklungsbiologie, Abt. Biochemie, Tübingen, Federal Republic of Germany.

The length distribution of the glycan strands in the murein (peptidoglycan) sacculus of Escherichia coli has been analyzed after solubilization of the murein by complete digestion with human serum amidase. The glycan strands released were separated according to length by reversed-phase HPLC on wide-pore Nucleosil 300 C18 material at 50 degrees C, employing a convex gradient from 5 to 11% acetonitrile. The length of the fractionated glycan strands, which carry a nonreducing 1,6-anhydromuramic acid as a natural end group, was calculated from the ratio of total to nonreducing terminal muramic acid residues. This was possible after complete hydrolysis of the isolated glycan strands by muramidase followed by separation of the released nonreducing and reducing di- and tetrasaccharides by reversed-phase HPLC on Hypersil C18. The method established allows the separation of the glycan strands of murein, a poly-GlcNAc(beta 1-4)MurNAc-polysaccharide, up to a degree of polymerization of approximately 60. The predominant lengths of the glycan strands were 5 to 10 GlcNAc(beta 1-4)MurNAc disaccharide units.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009112 Muramic Acids Compounds consisting of glucosamine and lactate joined by an ether linkage. They occur naturally as N-acetyl derivatives in peptidoglycan, the characteristic polysaccharide composing bacterial cell walls. (From Dorland, 28th ed) Muramic Acid,Acid, Muramic,Acids, Muramic
D009113 Muramidase A basic enzyme that is present in saliva, tears, egg white, and many animal fluids. It functions as an antibacterial agent. The enzyme catalyzes the hydrolysis of 1,4-beta-linkages between N-acetylmuramic acid and N-acetyl-D-glucosamine residues in peptidoglycan and between N-acetyl-D-glucosamine residues in chitodextrin. EC 3.2.1.17. Lysozyme,Leftose,N-Acetylmuramide Glycanhydrolase,Glycanhydrolase, N-Acetylmuramide,N Acetylmuramide Glycanhydrolase
D010457 Peptidoglycan A structural polymer of the bacterial cell envelope consisting of sugars and amino acids which is responsible for both shape determination and cellular integrity under osmotic stress in virtually all bacteria. Murein,Pseudomurein
D011134 Polysaccharides Long chain polymeric CARBOHYDRATES composed of MONOSACCHARIDES linked by glycosidic bonds. Glycan,Glycans,Polysaccharide
D002240 Carbohydrate Sequence The sequence of carbohydrates within POLYSACCHARIDES; GLYCOPROTEINS; and GLYCOLIPIDS. Carbohydrate Sequences,Sequence, Carbohydrate,Sequences, Carbohydrate
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

H Harz, and K Burgdorf, and J V Höltje
January 1983, Molecular and cellular biochemistry,
H Harz, and K Burgdorf, and J V Höltje
January 1983, Methods in enzymology,
H Harz, and K Burgdorf, and J V Höltje
February 1977, Journal of chromatography,
H Harz, and K Burgdorf, and J V Höltje
July 1984, Journal of chromatography,
H Harz, and K Burgdorf, and J V Höltje
October 1980, Journal of chromatography,
H Harz, and K Burgdorf, and J V Höltje
August 1981, Journal of chromatography,
H Harz, and K Burgdorf, and J V Höltje
September 1988, Journal of chromatography,
H Harz, and K Burgdorf, and J V Höltje
May 2001, Se pu = Chinese journal of chromatography,
H Harz, and K Burgdorf, and J V Höltje
July 1999, Se pu = Chinese journal of chromatography,
H Harz, and K Burgdorf, and J V Höltje
May 1998, Se pu = Chinese journal of chromatography,
Copied contents to your clipboard!