Simultaneous meningeal and testicular lymphoblastic transformation of Ph1-positive chronic myelocytic leukaemia in a three-year-old boy. 1990

N L Carlsen, and G Erichsen, and I Lisse
Department of Paediatrics, State University Hospital, Rigshospitalet, Copenhagen, Denmark.

A three-and-a-half-year-old boy presented in the blastic phase of chronic myelocytic leukaemia (CML) with lymphoblastic infiltration of CNS and testes. The clinical signs and symptoms and also blood and bone marrow findings were otherwise compatible with the chronic phase of the disease, and none of the factors predictive of early transformation were present. Cytogenetic analysis revealed that the Ph1 chromosome, with no additional chromosomal abnormalities, was present in 85% of the bone marrow cells. Meningeal leukaemia is almost unknown in the chronic phase of CML. However, the incidence in the blastic phase may resemble the incidence of CNS leukaemia at diagnosis in children with acute leukaemias. Testicular involvement appears to be extremely rare even in the blastic phase of CML; the "true" incidence may, however, also resemble that of acute leukaemias. This raises the question of the need for testicular and meningeal surveillance and prophylaxis, at least during the blastic phase of CML. One should consider whether the simultaneous meningeal and testicular lymphoblastic leukaemia in this patient was the result of blastic transformation at two independent sites, or whether the testes were seeded from the meninges without identifiable spread to blood and bone marrow.

UI MeSH Term Description Entries
D008297 Male Males
D008577 Meningeal Neoplasms Benign and malignant neoplastic processes that arise from or secondarily involve the meningeal coverings of the brain and spinal cord. Intracranial Meningeal Neoplasms,Spinal Meningeal Neoplasms,Benign Meningeal Neoplasms,Leptomeningeal Neoplasms,Malignant Meningeal Neoplasms,Meningeal Cancer,Meningeal Neoplasms, Benign,Meningeal Neoplasms, Intracranial,Meningeal Neoplasms, Malignant,Meningeal Tumors,Neoplasms, Leptomeningeal,Neoplasms, Meningeal,Benign Meningeal Neoplasm,Cancer, Meningeal,Cancers, Meningeal,Intracranial Meningeal Neoplasm,Leptomeningeal Neoplasm,Malignant Meningeal Neoplasm,Meningeal Cancers,Meningeal Neoplasm,Meningeal Neoplasm, Benign,Meningeal Neoplasm, Intracranial,Meningeal Neoplasm, Malignant,Meningeal Neoplasm, Spinal,Meningeal Neoplasms, Spinal,Meningeal Tumor,Neoplasm, Benign Meningeal,Neoplasm, Intracranial Meningeal,Neoplasm, Leptomeningeal,Neoplasm, Malignant Meningeal,Neoplasm, Meningeal,Neoplasm, Spinal Meningeal,Neoplasms, Benign Meningeal,Neoplasms, Intracranial Meningeal,Neoplasms, Malignant Meningeal,Neoplasms, Spinal Meningeal,Spinal Meningeal Neoplasm,Tumor, Meningeal,Tumors, Meningeal
D001752 Blast Crisis An advanced phase of chronic myelogenous leukemia, characterized by a rapid increase in the proportion of immature white blood cells (blasts) in the blood and bone marrow to greater than 30%. Blast Phase,Blast Crises,Blast Phases,Crises, Blast,Crisis, Blast,Phase, Blast,Phases, Blast
D001853 Bone Marrow The soft tissue filling the cavities of bones. Bone marrow exists in two types, yellow and red. Yellow marrow is found in the large cavities of large bones and consists mostly of fat cells and a few primitive blood cells. Red marrow is a hematopoietic tissue and is the site of production of erythrocytes and granular leukocytes. Bone marrow is made up of a framework of connective tissue containing branching fibers with the frame being filled with marrow cells. Marrow,Red Marrow,Yellow Marrow,Marrow, Bone,Marrow, Red,Marrow, Yellow
D002471 Cell Transformation, Neoplastic Cell changes manifested by escape from control mechanisms, increased growth potential, alterations in the cell surface, karyotypic abnormalities, morphological and biochemical deviations from the norm, and other attributes conferring the ability to invade, metastasize, and kill. Neoplastic Transformation, Cell,Neoplastic Cell Transformation,Transformation, Neoplastic Cell,Tumorigenic Transformation,Cell Neoplastic Transformation,Cell Neoplastic Transformations,Cell Transformations, Neoplastic,Neoplastic Cell Transformations,Neoplastic Transformations, Cell,Transformation, Cell Neoplastic,Transformation, Tumorigenic,Transformations, Cell Neoplastic,Transformations, Neoplastic Cell,Transformations, Tumorigenic,Tumorigenic Transformations
D002675 Child, Preschool A child between the ages of 2 and 5. Children, Preschool,Preschool Child,Preschool Children
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013736 Testicular Neoplasms Tumors or cancer of the TESTIS. Germ cell tumors (GERMINOMA) of the testis constitute 95% of all testicular neoplasms. Cancer of Testis,Cancer of the Testes,Testicular Cancer,Testicular Neoplasm,Testicular Tumor,Testis Cancer,Cancer of the Testis,Neoplasms, Testicular,Neoplasms, Testis,Testicular Tumors,Testis Neoplasms,Tumor of Rete Testis,Cancer, Testicular,Cancer, Testis,Cancers, Testicular,Cancers, Testis,Neoplasm, Testicular,Neoplasm, Testis,Rete Testis Tumor,Rete Testis Tumors,Testicular Cancers,Testis Cancers,Testis Neoplasm,Testis Tumor, Rete,Testis Tumors, Rete,Tumor, Testicular,Tumors, Testicular
D015464 Leukemia, Myelogenous, Chronic, BCR-ABL Positive Clonal hematopoetic disorder caused by an acquired genetic defect in PLURIPOTENT STEM CELLS. It starts in MYELOID CELLS of the bone marrow, invades the blood and then other organs. The condition progresses from a stable, more indolent, chronic phase (LEUKEMIA, MYELOID, CHRONIC PHASE) lasting up to 7 years, to an advanced phase composed of an accelerated phase (LEUKEMIA, MYELOID, ACCELERATED PHASE) and BLAST CRISIS. Granulocytic Leukemia, Chronic,Leukemia, Granulocytic, Chronic,Leukemia, Myelocytic, Chronic,Leukemia, Myelogenous, Chronic,Leukemia, Myeloid, Chronic,Myelocytic Leukemia, Chronic,Myelogenous Leukemia, Chronic,Myeloid Leukemia, Chronic,Leukemia, Chronic Myelogenous,Leukemia, Chronic Myeloid,Leukemia, Myelogenous, Ph1 Positive,Leukemia, Myelogenous, Ph1-Positive,Leukemia, Myeloid, Ph1 Positive,Leukemia, Myeloid, Ph1-Positive,Leukemia, Myeloid, Philadelphia Positive,Leukemia, Myeloid, Philadelphia-Positive,Myelogenous Leukemia, Ph1-Positive,Myeloid Leukemia, Ph1-Positive,Myeloid Leukemia, Philadelphia-Positive,Chronic Granulocytic Leukemia,Chronic Granulocytic Leukemias,Chronic Myelocytic Leukemia,Chronic Myelocytic Leukemias,Chronic Myelogenous Leukemia,Chronic Myelogenous Leukemias,Chronic Myeloid Leukemia,Chronic Myeloid Leukemias,Granulocytic Leukemias, Chronic,Leukemia, Chronic Granulocytic,Leukemia, Chronic Myelocytic,Leukemia, Ph1-Positive Myelogenous,Leukemia, Ph1-Positive Myeloid,Leukemia, Philadelphia-Positive Myeloid,Leukemias, Chronic Granulocytic,Leukemias, Chronic Myelocytic,Leukemias, Chronic Myelogenous,Leukemias, Chronic Myeloid,Leukemias, Ph1-Positive Myelogenous,Leukemias, Ph1-Positive Myeloid,Leukemias, Philadelphia-Positive Myeloid,Myelocytic Leukemias, Chronic,Myelogenous Leukemia, Ph1 Positive,Myelogenous Leukemias, Chronic,Myelogenous Leukemias, Ph1-Positive,Myeloid Leukemia, Ph1 Positive,Myeloid Leukemia, Philadelphia Positive,Myeloid Leukemias, Chronic,Myeloid Leukemias, Ph1-Positive,Myeloid Leukemias, Philadelphia-Positive,Ph1-Positive Myelogenous Leukemia,Ph1-Positive Myelogenous Leukemias,Ph1-Positive Myeloid Leukemia,Ph1-Positive Myeloid Leukemias,Philadelphia-Positive Myeloid Leukemia,Philadelphia-Positive Myeloid Leukemias
D015703 Antigens, CD Differentiation antigens residing on mammalian leukocytes. CD stands for cluster of differentiation, which refers to groups of monoclonal antibodies that show similar reactivity with certain subpopulations of antigens of a particular lineage or differentiation stage. The subpopulations of antigens are also known by the same CD designation. CD Antigen,Cluster of Differentiation Antigen,Cluster of Differentiation Marker,Differentiation Antigens, Leukocyte, Human,Leukocyte Differentiation Antigens, Human,Cluster of Differentiation Antigens,Cluster of Differentiation Markers,Antigen Cluster, Differentiation,Antigen, CD,CD Antigens,Differentiation Antigen Cluster,Differentiation Marker Cluster,Marker Cluster, Differentiation

Related Publications

N L Carlsen, and G Erichsen, and I Lisse
May 1979, British journal of haematology,
N L Carlsen, and G Erichsen, and I Lisse
January 1984, Leukemia research,
N L Carlsen, and G Erichsen, and I Lisse
August 1978, Australian and New Zealand journal of medicine,
N L Carlsen, and G Erichsen, and I Lisse
May 1979, Lancet (London, England),
N L Carlsen, and G Erichsen, and I Lisse
February 1980, Clinics in haematology,
N L Carlsen, and G Erichsen, and I Lisse
November 1982, Lancet (London, England),
N L Carlsen, and G Erichsen, and I Lisse
October 1990, Acta medica Okayama,
N L Carlsen, and G Erichsen, and I Lisse
September 1983, Nihon Ketsueki Gakkai zasshi : journal of Japan Haematological Society,
N L Carlsen, and G Erichsen, and I Lisse
December 1979, International journal of cancer,
N L Carlsen, and G Erichsen, and I Lisse
August 1988, Nihon Ketsueki Gakkai zasshi : journal of Japan Haematological Society,
Copied contents to your clipboard!