The effects of androgens and estrogen on the external morphology and electric organ discharge waveform of Gnathonemus petersii (Mormyridae, Teleostei). 1990

R E Landsman, and C F Harding, and P Moller, and P Thomas
Department of Psychology, Hunter College, City University of New York, New York 10021.

The effects of androgens and estrogen on the external morphology and electric organ discharge (EOD) waveform in Gnathonemus petersii, a weakly discharging electric fish, were investigated. Following preimplant data collection, juvenile and adult fish were gonadectomized and implanted with silastic capsules containing either high or low doses of testosterone (T), dihydrotestosterone (DHT), estradiol-17 beta (E2), or cholesterol. One group of fish was treated with high doses of DHT + E2. Radioimmunoassays revealed that low-dose implants resulted in plasma T levels comparable to and high-dose implants about sixfold greater than those found in adult males imported during breeding season. High-dose E2 implants resulted in higher plasma E2 levels in adults than those in juveniles. At either dose, both androgens induced male-like indentations in the dorsal margin of the anal fin of juveniles and adult females by 4 weeks postimplant. Both low and high doses of T decreased the peak power spectrum frequency (PPSF) of Fourier transformations of EODs and increased the durations of phases 2 and 3 of the EOD in juveniles and adults, but the high doses caused more rapid and profound effects. The two doses of T caused opposite effects on the durations of phases 1 and 4 juveniles. The low dose of T decreased the durations of phases 1 and 4, while the high dose increased them. In adults, the high dose of T increased the duration of phase 1, but had inconsistent effects on the duration of phase 4. Total EOD durations were increased by both doses of T in juveniles, while adults showed inconsistent effects possibly due to individual variability in hormone sensitivity. Compared to T, DHT exerted similar, but less dramatic effects on all measures, but only at high doses. E2 significantly increased adult PPSFs, the first such finding in a mormyrid species. E2 had no effects on juvenile PPSFs, or on adult or juvenile EOD phase durations. The effects of DHT + E2 on PPSF and phases 2 and 3 were similar to those of DHT alone. These findings demonstrate quantifiable steroid-dependent plasticity in the durations of individual phases of EODs in an electric fish and are the first to show that the external morphology in Gnathonemus petersii is androgen-dependent. The results are discussed with regard to methodological considerations and hormone studies involving sex differences in EODs reported for this and other species.

UI MeSH Term Description Entries
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004555 Electric Fish Fishes which generate an electric discharge. The voltage of the discharge varies from weak to strong in various groups of fish. The ELECTRIC ORGAN and electroplax are of prime interest in this group. They occur in more than one family. Mormyrid,Mormyridae,Elephantfish,Elephantfishes,Fish, Electric,Mormyrids
D004557 Electric Organ In about 250 species of electric fishes, modified muscle fibers forming disklike multinucleate plates arranged in stacks like batteries in series and embedded in a gelatinous matrix. A large torpedo ray may have half a million plates. Muscles in different parts of the body may be modified, i.e., the trunk and tail in the electric eel, the hyobranchial apparatus in the electric ray, and extrinsic eye muscles in the stargazers. Powerful electric organs emit pulses in brief bursts several times a second. They serve to stun prey and ward off predators. A large torpedo ray can produce of shock of more than 200 volts, capable of stunning a human. (Storer et al., General Zoology, 6th ed, p672) Electric Organs,Organ, Electric,Organs, Electric
D004958 Estradiol The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. 17 beta-Estradiol,Estradiol-17 beta,Oestradiol,17 beta-Oestradiol,Aerodiol,Delestrogen,Estrace,Estraderm TTS,Estradiol Anhydrous,Estradiol Hemihydrate,Estradiol Hemihydrate, (17 alpha)-Isomer,Estradiol Monohydrate,Estradiol Valerate,Estradiol Valeriante,Estradiol, (+-)-Isomer,Estradiol, (-)-Isomer,Estradiol, (16 alpha,17 alpha)-Isomer,Estradiol, (16 alpha,17 beta)-Isomer,Estradiol, (17-alpha)-Isomer,Estradiol, (8 alpha,17 beta)-(+-)-Isomer,Estradiol, (8 alpha,17 beta)-Isomer,Estradiol, (9 beta,17 alpha)-Isomer,Estradiol, (9 beta,17 beta)-Isomer,Estradiol, Monosodium Salt,Estradiol, Sodium Salt,Estradiol-17 alpha,Estradiol-17beta,Ovocyclin,Progynon-Depot,Progynova,Vivelle,17 beta Estradiol,17 beta Oestradiol,Estradiol 17 alpha,Estradiol 17 beta,Estradiol 17beta,Progynon Depot
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001143 Arousal Cortical vigilance or readiness of tone, presumed to be in response to sensory stimulation via the reticular activating system. Vigilance, Cortical,Arousals,Cortical Vigilance
D012726 Sexual Behavior, Animal Sexual activities of animals. Mating Behavior, Animal,Sex Behavior, Animal,Animal Mating Behavior,Animal Mating Behaviors,Animal Sex Behavior,Animal Sex Behaviors,Animal Sexual Behavior,Animal Sexual Behaviors,Mating Behaviors, Animal,Sex Behaviors, Animal,Sexual Behaviors, Animal
D012741 Sexual Maturation Achievement of full sexual capacity in animals and in humans. Sex Maturation,Maturation, Sex,Maturation, Sexual
D013196 Dihydrotestosterone A potent androgenic metabolite of TESTOSTERONE. It is produced by the action of the enzyme 3-OXO-5-ALPHA-STEROID 4-DEHYDROGENASE. 5 alpha-Dihydrotestosterone,Androstanolone,Stanolone,17 beta-Hydroxy-5 beta-Androstan-3-One,17beta-Hydroxy-5alpha-Androstan-3-One,5 beta-Dihydrotestosterone,5-alpha Dihydrotestosterone,5-alpha-DHT,Anaprotin,Andractim,Dihydroepitestosterone,Gelovit,17 beta Hydroxy 5 beta Androstan 3 One,17beta Hydroxy 5alpha Androstan 3 One,5 alpha DHT,5 alpha Dihydrotestosterone,5 beta Dihydrotestosterone,Dihydrotestosterone, 5-alpha,beta-Hydroxy-5 beta-Androstan-3-One, 17
D013739 Testosterone A potent androgenic steroid and major product secreted by the LEYDIG CELLS of the TESTIS. Its production is stimulated by LUTEINIZING HORMONE from the PITUITARY GLAND. In turn, testosterone exerts feedback control of the pituitary LH and FSH secretion. Depending on the tissues, testosterone can be further converted to DIHYDROTESTOSTERONE or ESTRADIOL. 17-beta-Hydroxy-4-Androsten-3-one,17-beta-Hydroxy-8 alpha-4-Androsten-3-one,8-Isotestosterone,AndroGel,Androderm,Andropatch,Androtop,Histerone,Sterotate,Sustanon,Testim,Testoderm,Testolin,Testopel,Testosterone Sulfate,17 beta Hydroxy 4 Androsten 3 one,17 beta Hydroxy 8 alpha 4 Androsten 3 one,8 Isotestosterone

Related Publications

R E Landsman, and C F Harding, and P Moller, and P Thomas
July 2003, The Journal of experimental biology,
R E Landsman, and C F Harding, and P Moller, and P Thomas
January 1974, Behaviour,
R E Landsman, and C F Harding, and P Moller, and P Thomas
December 2002, The Journal of experimental biology,
R E Landsman, and C F Harding, and P Moller, and P Thomas
March 1986, Journal of comparative psychology (Washington, D.C. : 1983),
R E Landsman, and C F Harding, and P Moller, and P Thomas
May 2020, Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology,
R E Landsman, and C F Harding, and P Moller, and P Thomas
May 1993, Journal of comparative physiology. A, Sensory, neural, and behavioral physiology,
R E Landsman, and C F Harding, and P Moller, and P Thomas
January 1971, Zeitschrift fur Zellforschung und mikroskopische Anatomie (Vienna, Austria : 1948),
R E Landsman, and C F Harding, and P Moller, and P Thomas
March 2022, Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology,
R E Landsman, and C F Harding, and P Moller, and P Thomas
January 1983, Comparative biochemistry and physiology. A, Comparative physiology,
Copied contents to your clipboard!