Lithium-7 nuclear magnetic resonance, water proton nuclear magnetic resonance, and gadolinium electron paramagnetic resonance studies of the sarcoplasmic reticulum calcium ion transport adenosine triphosphatase. 1979

E M Stephens, and C M Grisham

The interactions of gadolinium ion, lithium, and two substrate analogues, beta,gamma-imido-ATP (AMP-PNP) and tridentate CrATP, with the calcium ion transport adenosine triphosphatase (Ca2+-ATPase) of rabbit muscle sarcoplasmic reticulum have been examined by using 7Li+ NMR, water proton NMR, and Gd3+ EPR studies. Steady-state phosphorylation studies indicate that Gd3+ binds to the Ca2+ activator sites on the enzyme with an affinity which is approximately 10 times greater than that of Ca2+. 7Li+, which activates the Ca2+-ATPase in place of K+, has been found to be a suitable nucleus for probing the active sites of monovalent cation-requiring enzymes. 7Li+ nuclear relaxation studies demonstrate that the binding of Gd3+ ion to the two Ca2+ sites on Ca2+-ATPase increases the longitudinal relaxation rate (1/T1) of enzyme-bound Li+. The increase in 1/T1 was not observed in the absence of enzyme, indicating that the ATPase enhances the parmagnetic effect of Gd3+ on 1/T1 of 7Li+. Water proton relaxation studies also show that the ATPase binds Gd3+ at two tight-binding sites. Titrations of Gd3+ solutions with Ca2+-ATPase indicate that the tighter of the two Gd3+-binding sites (site 1) provides a ghigher enhancement of water relaxation than the other, weaker Gd3+ site (site 2) and also indicate that the average of the enhancements at the two sites is 7.4. These data, together with a titration of the ATPase with Gd3+ ion, yield enhancements, epsilonB, of 9.4 at site 1 and 5.4 at site 2. Analysis of the frequency dependence of 1/T1 of water indicates that the electron spin relaxation taus of Gd3+ is unusually long (2 X 10(-9) s) and suggests that the Ca2+-binding sites on the ATPase experience a reduced accessiblity of solvent water. This may indicate that the Ca2+ sites on the Ca2+-ATPase are buried or occluded within a cleft or channel in the enzyme. The analysis of the frequency dependence is also consistent with three exchangeable water protons on Gd3+ at site 1 and two fast exchanging water protons at site 2. Addition of the nonhydrolyzing substrate analogues, AMP-PNP and tridenate CrATP, to the enzyme-Gd3+ complex results in a decrease in the observed enhancement, with little change in the dipolar correlation time for Gd3+, consistent with a substrate-induced decrease in the number of fast-exchanging water protons on enzyme-bound Gd3+. From the effect of Gd3+ on 1/T1 of enzyme-bound Li+, Gd3+-Li+ separations of 7.0 and 9.1 A are calculated. On the assumption of a single Li+ site on the enzyme, these distances set an upper limit on the separation between Ca2+ sites on the enzyme of 16.1 A.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008094 Lithium An element in the alkali metals family. It has the atomic symbol Li, atomic number 3, and atomic weight [6.938; 6.997]. Salts of lithium are used in treating BIPOLAR DISORDER. Lithium-7,Lithium 7
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D005682 Gadolinium An element of the rare earth family of metals. It has the atomic symbol Gd, atomic number 64, and atomic weight 157.25. Its oxide is used in the control rods of some nuclear reactors.
D000252 Calcium-Transporting ATPases Cation-transporting proteins that utilize the energy of ATP hydrolysis for the transport of CALCIUM. They differ from CALCIUM CHANNELS which allow calcium to pass through a membrane without the use of energy. ATPase, Calcium,Adenosinetriphosphatase, Calcium,Ca(2+)-Transporting ATPase,Calcium ATPase,Calcium Adenosinetriphosphatase,Adenosine Triphosphatase, Calcium,Ca2+ ATPase,Calcium-ATPase,ATPase, Ca2+,ATPases, Calcium-Transporting,Calcium Adenosine Triphosphatase,Calcium Transporting ATPases,Triphosphatase, Calcium Adenosine

Related Publications

E M Stephens, and C M Grisham
April 1976, The Journal of biological chemistry,
E M Stephens, and C M Grisham
March 1975, The Journal of biological chemistry,
E M Stephens, and C M Grisham
October 1965, The Journal of cell biology,
E M Stephens, and C M Grisham
May 1985, Journal of molecular and cellular cardiology,
E M Stephens, and C M Grisham
January 1977, Physiological chemistry and physics,
Copied contents to your clipboard!