Isolation and classification of Bdellovibrio and like organisms. 2012

Edouard Jurkevitch
Plant Pathology and Microbiology, The Hebrew University of Jerusalem, Rehovot, Israel.

Bdellovibrio and like organisms (BALOs) are obligate predators of Gram-negative bacteria. BALOs are isolated as plaques growing at the expense of their prey and are cultivated as two-member cultures. The growth cycle is composed of an extracellular attack phase and an intraperiplasmic elongation and replication phase. However, there are methods for obtaining host-independent (HI) mutants that grow without prey on rich media. BALOs are commonly found in the environment but generally constitute small populations; therefore, their isolation may require enrichment steps. Contamination by other bacteria during isolation necessitates efficient separation between the smaller BALO cells from the majority of larger bacteria. BALOs can also be directly detected and quantified in environmental samples using specific PCR. Synchronous cultures of both wild-type and HI derivatives can be obtained to study the different growth phases. These can be further separated by centrifugation. Classification is based on 16S rDNA analysis. Protocols relevant to these aspects of BALO detection, isolation, growth, classification, and quantitation are presented in this unit.

UI MeSH Term Description Entries
D002498 Centrifugation Process of using a rotating machine to generate centrifugal force to separate substances of different densities, remove moisture, or simulate gravitational effects. It employs a large motor-driven apparatus with a long arm, at the end of which human and animal subjects, biological specimens, or equipment can be revolved and rotated at various speeds to study gravitational effects. (From Websters, 10th ed; McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
D005374 Filtration A process of separating particulate matter from a fluid, such as air or a liquid, by passing the fluid carrier through a medium that will not pass the particulates. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Filtrations
D001431 Bacteriological Techniques Techniques used in studying bacteria. Bacteriologic Technic,Bacteriologic Technics,Bacteriologic Techniques,Bacteriological Technique,Technic, Bacteriological,Technics, Bacteriological,Technique, Bacteriological,Techniques, Bacteriological,Bacteriologic Technique,Bacteriological Technic,Bacteriological Technics,Technic, Bacteriologic,Technics, Bacteriologic,Technique, Bacteriologic,Techniques, Bacteriologic
D001501 Bdellovibrio A genus of bacteria capable of developing within other bacteria.
D012988 Soil Microbiology The presence of bacteria, viruses, and fungi in the soil. This term is not restricted to pathogenic organisms. Microbiology, Soil
D014871 Water Microbiology The presence of bacteria, viruses, and fungi in water. This term is not restricted to pathogenic organisms. Microbiology, Water
D015169 Colony Count, Microbial Enumeration by direct count of viable, isolated bacterial, archaeal, or fungal CELLS or SPORES capable of growth on solid CULTURE MEDIA. The method is used routinely by environmental microbiologists for quantifying organisms in AIR; FOOD; and WATER; by clinicians for measuring patients' microbial load; and in antimicrobial drug testing. Agar Dilution Count,Colony-Forming Units Assay, Microbial,Fungal Count,Pour Plate Count,Spore Count,Spread Plate Count,Streak Plate Count,Colony Forming Units Assay, Microbial,Colony Forming Units Assays, Microbial,Agar Dilution Counts,Colony Counts, Microbial,Count, Agar Dilution,Count, Fungal,Count, Microbial Colony,Count, Pour Plate,Count, Spore,Count, Spread Plate,Count, Streak Plate,Counts, Agar Dilution,Counts, Fungal,Counts, Microbial Colony,Counts, Pour Plate,Counts, Spore,Counts, Spread Plate,Counts, Streak Plate,Dilution Count, Agar,Dilution Counts, Agar,Fungal Counts,Microbial Colony Count,Microbial Colony Counts,Pour Plate Counts,Spore Counts,Spread Plate Counts,Streak Plate Counts
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain
D021521 Ribotyping RESTRICTION FRAGMENT LENGTH POLYMORPHISM analysis of rRNA genes that is used for differentiating between species or strains. Riboprint,Riboprinting,Ribotype,Riboprints,Ribotypes

Related Publications

Edouard Jurkevitch
February 2007, Future microbiology,
Edouard Jurkevitch
March 2019, Applied and environmental microbiology,
Edouard Jurkevitch
October 2015, Wei sheng wu xue bao = Acta microbiologica Sinica,
Edouard Jurkevitch
August 2020, Journal of microbiological methods,
Copied contents to your clipboard!