Adipose tissue inflammation and ectopic lipid accumulation. 2012

Takayoshi Suganami, and Miyako Tanaka, and Yoshihiro Ogawa
Department of Molecular Medicine and Metabolism, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.

Obesity may be viewed as a chronic low-grade inflammatory disease as well as a metabolic disease. Indeed, unbalanced production of pro- and anti-inflammatory adipocytokines critically contributes to the obesity-induced insulin resistance. In addition to lipid-laden mature adipocytes, adipose tissue is composed of various stromal cells such as preadipocytes, endothelial cells, fibroblasts, and immune cells that may be involved in adipose tissue functions. Accumulating evidence has suggested that adipocytes and stromal cells in adipose tissue change dramatically in number and cell type during the course of obesity, which is referred to as "adipose tissue remodeling." Among stromal cells, infiltration of macrophages in obese adipose tissue precedes the development of insulin resistance in animal models, suggesting that they are crucial for adipose tissue inflammation. We have provided evidence suggesting that a paracrine loop involving saturated fatty acids and tumor necrosis factor-α derived from adipocytes and macrophages, respectively, aggravates obesity-induced adipose tissue inflammation. On the other hand, storing excessive energy as triglyceride is also a fundamental function of adipose tissue. Recent evidence suggests that reduced lipid storage in obese adipose tissue contributes to ectopic lipid accumulation in non-adipose tissues such as the liver, skeletal muscle, and pancreas, where lipotoxicity impairs their metabolic functions. Notably, chronic inflammation is capable of inducing insulin resistance, lipolysis, and interstitial fibrosis in adipose tissue, all of which may reduce the lipid-storing function. Understanding the molecular mechanism underlying adipose tissue remodeling may lead to the identification of novel therapeutic strategies to prevent or treat obesity-induced adipose tissue inflammation.

UI MeSH Term Description Entries
D007249 Inflammation A pathological process characterized by injury or destruction of tissues caused by a variety of cytologic and chemical reactions. It is usually manifested by typical signs of pain, heat, redness, swelling, and loss of function. Innate Inflammatory Response,Inflammations,Inflammatory Response, Innate,Innate Inflammatory Responses
D007333 Insulin Resistance Diminished effectiveness of INSULIN in lowering blood sugar levels: requiring the use of 200 units or more of insulin per day to prevent HYPERGLYCEMIA or KETOSIS. Insulin Sensitivity,Resistance, Insulin,Sensitivity, Insulin
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D009765 Obesity A status with BODY WEIGHT that is grossly above the recommended standards, usually due to accumulation of excess FATS in the body. The standards may vary with age, sex, genetic or cultural background. In the BODY MASS INDEX, a BMI greater than 30.0 kg/m2 is considered obese, and a BMI greater than 40.0 kg/m2 is considered morbidly obese (MORBID OBESITY).
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000071199 NLR Family, Pyrin Domain-Containing 3 Protein An NLR protein that contains an N-terminal PYRIN DOMAIN and ATP-binding site and 9 C-terminal LEUCINE-rich repeats; it is expressed primarily by MACROPHAGES. It is a core component of the INFLAMMASOME and directs its assembly in response to pathogen infection and damage-associated stimuli. Mutations in the NLRP3 gene are associated with FAMILIAL COLD AUTOINFLAMMATORY SYNDROME. Cold Autoinflammatory Syndrome 1 Protein,NACHT, LRR and PYD Domains-Containing Protein 3,NLRP3 Protein,NACHT, LRR and PYD Domains Containing Protein 3,NLR Family, Pyrin Domain Containing 3 Protein
D000273 Adipose Tissue Specialized connective tissue composed of fat cells (ADIPOCYTES). It is the site of stored FATS, usually in the form of TRIGLYCERIDES. In mammals, there are two types of adipose tissue, the WHITE FAT and the BROWN FAT. Their relative distributions vary in different species with most adipose tissue being white. Fatty Tissue,Body Fat,Fat Pad,Fat Pads,Pad, Fat,Pads, Fat,Tissue, Adipose,Tissue, Fatty
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Takayoshi Suganami, and Miyako Tanaka, and Yoshihiro Ogawa
February 2020, Cell reports,
Takayoshi Suganami, and Miyako Tanaka, and Yoshihiro Ogawa
May 2008, Physiology & behavior,
Takayoshi Suganami, and Miyako Tanaka, and Yoshihiro Ogawa
July 2019, Molecular metabolism,
Takayoshi Suganami, and Miyako Tanaka, and Yoshihiro Ogawa
October 1985, International journal of sports medicine,
Takayoshi Suganami, and Miyako Tanaka, and Yoshihiro Ogawa
May 2017, Gastroenterology,
Takayoshi Suganami, and Miyako Tanaka, and Yoshihiro Ogawa
July 2021, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
Takayoshi Suganami, and Miyako Tanaka, and Yoshihiro Ogawa
April 2015, Biochimica et biophysica acta,
Takayoshi Suganami, and Miyako Tanaka, and Yoshihiro Ogawa
June 2022, Journal of acquired immune deficiency syndromes (1999),
Takayoshi Suganami, and Miyako Tanaka, and Yoshihiro Ogawa
February 2023, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
Copied contents to your clipboard!