Relationship between orientation sensitivity and spatiotemporal receptive field structures of neurons in the cat lateral geniculate nucleus. 2012

Naofumi Suematsu, and Tomoyuki Naito, and Hiromichi Sato
Laboratory of Cognitive and Behavioral Neuroscience, Graduate School of Frontier Biosciences, Osaka University, Machikaneyama, Toyonaka, Osaka, Japan.

Although it is thought that orientation selectivity first emerges in the primary visual cortex, several studies have reported that neurons in the cat lateral geniculate nucleus (LGN) are sensitive to stimulus orientation, especially for high spatial frequency (SF) stimuli. To understand how this orientation sensitivity emerges, we investigated the spatiotemporal structures of linear receptive fields (RFs) of LGN neurons. Orientation tunings at several SFs were measured using sinusoidal drifting grating stimuli. Fine spatiotemporal structures of the linear RFs were measured using a reverse correlation technique and two-dimensional dynamic Gaussian white noise stimuli. A non-linear response modulation function was estimated by comparing measured responses with responses predicted from a linear RF structure. Although we found that a population of LGN neurons exhibited significantly elongated linear RF centers and that the angles of the long axes corresponded well to the preferred orientations, the orientation tunings predicted from the linear RFs were significantly broader than those measured. These results suggest that orientation-tuned non-linear response modulation induced by stimulation outside the classical RF contributes to the sharp orientation tuning seen in LGN neurons.

UI MeSH Term Description Entries
D008959 Models, Neurological Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Neurologic Models,Model, Neurological,Neurologic Model,Neurological Model,Neurological Models,Model, Neurologic,Models, Neurologic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009949 Orientation Awareness of oneself in relation to time, place and person. Cognitive Orientation,Mental Orientation,Psychological Orientation,Cognitive Orientations,Mental Orientations,Orientation, Cognitive,Orientation, Mental,Orientation, Psychological,Orientations,Orientations, Cognitive,Orientations, Mental,Orientations, Psychological,Psychological Orientations
D010775 Photic Stimulation Investigative technique commonly used during ELECTROENCEPHALOGRAPHY in which a series of bright light flashes or visual patterns are used to elicit brain activity. Stimulation, Photic,Visual Stimulation,Photic Stimulations,Stimulation, Visual,Stimulations, Photic,Stimulations, Visual,Visual Stimulations
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D005829 Geniculate Bodies Part of the DIENCEPHALON inferior to the caudal end of the dorsal THALAMUS. Includes the lateral geniculate body which relays visual impulses from the OPTIC TRACT to the calcarine cortex, and the medial geniculate body which relays auditory impulses from the lateral lemniscus to the AUDITORY CORTEX. Lateral Geniculate Body,Medial Geniculate Body,Metathalamus,Corpus Geniculatum Mediale,Geniculate Nucleus,Lateral Geniculate Nucleus,Medial Geniculate Complex,Medial Geniculate Nucleus,Nucleus Geniculatus Lateralis Dorsalis,Nucleus Geniculatus Lateralis Pars Dorsalis,Bodies, Geniculate,Complex, Medial Geniculate,Complices, Medial Geniculate,Corpus Geniculatum Mediales,Geniculate Bodies, Lateral,Geniculate Bodies, Medial,Geniculate Body,Geniculate Body, Lateral,Geniculate Body, Medial,Geniculate Complex, Medial,Geniculate Complices, Medial,Geniculate Nucleus, Lateral,Geniculate Nucleus, Medial,Geniculatum Mediale, Corpus,Geniculatum Mediales, Corpus,Lateral Geniculate Bodies,Medial Geniculate Bodies,Medial Geniculate Complices,Mediale, Corpus Geniculatum,Mediales, Corpus Geniculatum,Nucleus, Geniculate,Nucleus, Lateral Geniculate,Nucleus, Medial Geniculate
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014793 Visual Cortex Area of the OCCIPITAL LOBE concerned with the processing of visual information relayed via VISUAL PATHWAYS. Area V2,Area V3,Area V4,Area V5,Associative Visual Cortex,Brodmann Area 18,Brodmann Area 19,Brodmann's Area 18,Brodmann's Area 19,Cortical Area V2,Cortical Area V3,Cortical Area V4,Cortical Area V5,Secondary Visual Cortex,Visual Cortex Secondary,Visual Cortex V2,Visual Cortex V3,Visual Cortex V3, V4, V5,Visual Cortex V4,Visual Cortex V5,Visual Cortex, Associative,Visual Motion Area,Extrastriate Cortex,Area 18, Brodmann,Area 18, Brodmann's,Area 19, Brodmann,Area 19, Brodmann's,Area V2, Cortical,Area V3, Cortical,Area V4, Cortical,Area V5, Cortical,Area, Visual Motion,Associative Visual Cortices,Brodmanns Area 18,Brodmanns Area 19,Cortex Secondary, Visual,Cortex V2, Visual,Cortex V3, Visual,Cortex, Associative Visual,Cortex, Extrastriate,Cortex, Secondary Visual,Cortex, Visual,Cortical Area V3s,Extrastriate Cortices,Secondary Visual Cortices,V3, Cortical Area,V3, Visual Cortex,V4, Area,V4, Cortical Area,V5, Area,V5, Cortical Area,V5, Visual Cortex,Visual Cortex Secondaries,Visual Cortex, Secondary,Visual Motion Areas
D014794 Visual Fields The total area or space visible in a person's peripheral vision with the eye looking straightforward. Field, Visual,Fields, Visual,Visual Field
D015350 Contrast Sensitivity The ability to detect sharp boundaries (stimuli) and to detect slight changes in luminance at regions without distinct contours. Psychophysical measurements of this visual function are used to evaluate VISUAL ACUITY and to detect eye disease. Visual Contrast Sensitivity,Sensitivity, Contrast,Sensitivity, Visual Contrast

Related Publications

Naofumi Suematsu, and Tomoyuki Naito, and Hiromichi Sato
January 2013, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Naofumi Suematsu, and Tomoyuki Naito, and Hiromichi Sato
January 1986, Acta neurobiologiae experimentalis,
Naofumi Suematsu, and Tomoyuki Naito, and Hiromichi Sato
August 1997, Journal of neurophysiology,
Naofumi Suematsu, and Tomoyuki Naito, and Hiromichi Sato
August 1977, Brain research,
Naofumi Suematsu, and Tomoyuki Naito, and Hiromichi Sato
March 1976, Journal of neurophysiology,
Naofumi Suematsu, and Tomoyuki Naito, and Hiromichi Sato
January 2016, PloS one,
Naofumi Suematsu, and Tomoyuki Naito, and Hiromichi Sato
July 1972, Journal of neurophysiology,
Naofumi Suematsu, and Tomoyuki Naito, and Hiromichi Sato
January 1977, Experimental brain research,
Naofumi Suematsu, and Tomoyuki Naito, and Hiromichi Sato
November 1983, The Journal of comparative neurology,
Copied contents to your clipboard!