Complex attributes of lateral hypothalamic neurons in the regulation of feeding of alert rhesus monkeys. 1990

Z Karádi, and Y Oomura, and H Nishino, and T R Scott, and L Lénárd, and S Aou
Institute of Physiology, University Medical School, Pécs, Hungary.

To elucidate the roles of glucose-sensitive (GS) and glucose-insensitive (GIS) cells of the lateral hypothalamic area (LHA), single neuron activity was recorded during 1) microelectrophoretic administration of chemicals, 2) a conditioned bar press feeding task, 3) gustatory, 4) olfactory, and 5) electrical brain stimulation. GS and GIS neurons showed different firing rate changes during phases of the task, and the responses were highly influenced by the palatability of the food and the motivational (hunger or satiety) state of the animal. The two groups of cells also differed in their responsiveness to gustatory and olfactory stimuli: GS neurons were more likely to respond to tastes and odors than GIS cells. Taste- and odor-responsive GS neurons were primarily suppressed by electrophoretically applied noradrenaline and were localized ventromedially within the LHA. The chemosensitive GIS cells, being organized along a dorsolateral axis, were especially excited by dopamine. The two sets of neurons had distinct connections with associative (orbitofrontal, prefrontal) cortical areas. GS and GIS cells, thus, appear to have differential and complex attributes in the control of feeding.

UI MeSH Term Description Entries
D007026 Hypothalamic Area, Lateral Area in the hypothalamus bounded medially by the mammillothalamic tract and the anterior column of the FORNIX (BRAIN). The medial edge of the INTERNAL CAPSULE and the subthalamic region form its lateral boundary. It contains the lateral hypothalamic nucleus, tuberomammillary nucleus, lateral tuberal nuclei, and fibers of the MEDIAL FOREBRAIN BUNDLE. Lateral Hypothalamic Area,Lateral Hypothalamic Nucleus,Tuberomammillary Nucleus,Accessory Nucleus of the Ventral Horn,Area Hypothalamica Lateralis,Area Lateralis Hypothalami,Lateral Hypothalamus,Lateral Tuberal Nuclei,Lateral Tuberal Nucleus,Area Hypothalamica Laterali,Area Lateralis Hypothalamus,Area, Lateral Hypothalamic,Areas, Lateral Hypothalamic,Hypothalami, Area Lateralis,Hypothalamic Areas, Lateral,Hypothalamic Nucleus, Lateral,Hypothalamica Laterali, Area,Hypothalamica Lateralis, Area,Hypothalamus, Area Lateralis,Hypothalamus, Lateral,Lateral Hypothalamic Areas,Laterali, Area Hypothalamica,Lateralis Hypothalami, Area,Lateralis Hypothalamus, Area,Lateralis, Area Hypothalamica,Nuclei, Lateral Tuberal,Nucleus, Lateral Hypothalamic,Nucleus, Lateral Tuberal,Nucleus, Tuberomammillary,Tuberal Nuclei, Lateral,Tuberal Nucleus, Lateral
D008253 Macaca mulatta A species of the genus MACACA inhabiting India, China, and other parts of Asia. The species is used extensively in biomedical research and adapts very well to living with humans. Chinese Rhesus Macaques,Macaca mulatta lasiota,Monkey, Rhesus,Rhesus Monkey,Rhesus Macaque,Chinese Rhesus Macaque,Macaca mulatta lasiotas,Macaque, Rhesus,Rhesus Macaque, Chinese,Rhesus Macaques,Rhesus Macaques, Chinese,Rhesus Monkeys
D008297 Male Males
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011597 Psychomotor Performance The coordination of a sensory or ideational (cognitive) process and a motor activity. Perceptual Motor Performance,Sensory Motor Performance,Visual Motor Coordination,Coordination, Visual Motor,Coordinations, Visual Motor,Motor Coordination, Visual,Motor Coordinations, Visual,Motor Performance, Perceptual,Motor Performance, Sensory,Motor Performances, Perceptual,Motor Performances, Sensory,Perceptual Motor Performances,Performance, Perceptual Motor,Performance, Psychomotor,Performance, Sensory Motor,Performances, Perceptual Motor,Performances, Psychomotor,Performances, Sensory Motor,Psychomotor Performances,Sensory Motor Performances,Visual Motor Coordinations
D012054 Reinforcement, Psychology The strengthening of a conditioned response. Negative Reinforcement,Positive Reinforcement,Psychological Reinforcement,Reinforcement (Psychology),Negative Reinforcements,Positive Reinforcements,Psychological Reinforcements,Psychology Reinforcement,Psychology Reinforcements,Reinforcement, Negative,Reinforcement, Positive,Reinforcement, Psychological,Reinforcements (Psychology),Reinforcements, Negative,Reinforcements, Positive,Reinforcements, Psychological,Reinforcements, Psychology
D003213 Conditioning, Psychological Simple form of learning involving the formation, strengthening, or weakening of an association between a stimulus and a response. Conditioning, Psychology,Psychological Conditioning,Social Learning Theory,Social Learning Theories,Theory, Social Learning
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005247 Feeding Behavior Behavioral responses or sequences associated with eating including modes of feeding, rhythmic patterns of eating, and time intervals. Dietary Habits,Eating Behavior,Faith-based Dietary Restrictions,Feeding Patterns,Feeding-Related Behavior,Food Habits,Diet Habits,Eating Habits,Behavior, Eating,Behavior, Feeding,Behavior, Feeding-Related,Behaviors, Eating,Behaviors, Feeding,Behaviors, Feeding-Related,Diet Habit,Dietary Habit,Dietary Restriction, Faith-based,Dietary Restrictions, Faith-based,Eating Behaviors,Eating Habit,Faith based Dietary Restrictions,Faith-based Dietary Restriction,Feeding Behaviors,Feeding Pattern,Feeding Related Behavior,Feeding-Related Behaviors,Food Habit,Habit, Diet,Habit, Dietary,Habit, Eating,Habit, Food,Habits, Diet,Pattern, Feeding,Patterns, Feeding,Restrictions, Faith-based Dietary
D005260 Female Females

Related Publications

Z Karádi, and Y Oomura, and H Nishino, and T R Scott, and L Lénárd, and S Aou
August 1977, Diabetes,
Z Karádi, and Y Oomura, and H Nishino, and T R Scott, and L Lénárd, and S Aou
March 2004, Experimental brain research,
Z Karádi, and Y Oomura, and H Nishino, and T R Scott, and L Lénárd, and S Aou
September 1975, Brain : a journal of neurology,
Z Karádi, and Y Oomura, and H Nishino, and T R Scott, and L Lénárd, and S Aou
November 2018, The journal of physiological sciences : JPS,
Z Karádi, and Y Oomura, and H Nishino, and T R Scott, and L Lénárd, and S Aou
November 2023, Current biology : CB,
Z Karádi, and Y Oomura, and H Nishino, and T R Scott, and L Lénárd, and S Aou
May 2005, Developmental psychobiology,
Z Karádi, and Y Oomura, and H Nishino, and T R Scott, and L Lénárd, and S Aou
January 1976, Journal of oral rehabilitation,
Z Karádi, and Y Oomura, and H Nishino, and T R Scott, and L Lénárd, and S Aou
March 2024, bioRxiv : the preprint server for biology,
Z Karádi, and Y Oomura, and H Nishino, and T R Scott, and L Lénárd, and S Aou
May 2024, Molecular metabolism,
Z Karádi, and Y Oomura, and H Nishino, and T R Scott, and L Lénárd, and S Aou
February 2018, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!