Ascorbate oxidase from Cucurbita pepo medullosa. New method of purification and reinvestigation of properties. 1979

A Marchesini, and P M Kroneck

1. Ascorbate oxidase has been isolated from the green squash Cucurbita pepo medullosa by a new purification method. Furthermore a low-molecular-weight copper protein containing one type-1 copper/20000 Mr could be separated during the purification of the oxidase. The six-step procedure developed improved the yield of ascorbate oxidase by a factor of 2.5. The method is well reproducible and a constant value of 8 Cu (7.95 +/- 0.1/140000 Mr) has been established. By ultracentrifugal and electrophoretic criteria the enzyme preparations have been found to be homogeneous. They exhibited a specific activity of 3930 +/- 50 units/mg protein or 1088 +/- 15 units/microgram copper. 2. The pure enzyme is characterized by the following optical purity indices: A280/A610 = 25 +/- 0.5, A330/A610 = 0.65 +/- 0.05 and A610/A500 = 7.0 +/- 0.25. The molar absorption coeffient of the characteristic absorption maximum at 610 nm (oxidized minus reduced) amounts of 9700 M-1 cm-1 . 3. Computer simulations of the electron paramagnetic resonance (EPR) spectra of the oxidized enzyme reveal the following parameters: for the type-1 (blue) copper gz = 2.227, gy = 2.058, gx = 2.036; Az = 5.0 mT, Ay = Ax = 0.5 mT, for the type-2 (non-blue) copper g parallel to = 2.242, g perpendicular = 2.053; A parallel to = 19.0 mT, A perpendicular 0.5 mT. Out of the eight copper atoms present in the oxidase four are detectable by EPR. Of these, three belong to the type-1 class, and one to the type-2 class, as demonstrated by computer simulations of the EPR spectra. 4. To achieve full reduction of the enzyme, as measured by bleaching of the blue chromophore, four equivalents of L-ascorbate or reductase must be added in the absence of molecular oxygen. Upon reduction of the enzyme the fluorescence at 330 nm (lambda max ex = 295 nm) is enhanced by a factor of 1.5 to 1.75. The reduced enzyme is readily reoxidized by dioxygen, ferricyanide or hydrogen peroxide. It binds two molecules of hydrogen peroxide in the oxidized state (1/type-3 Cu pair), which can be monitored by a characteristic increase of the absorbance around 310 nm (delta epsilon = 1000 +/- 50 M-1 cm-1). Corresponding changes in EPR and fluorescence spectra have not been detected.

UI MeSH Term Description Entries
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D010944 Plants Multicellular, eukaryotic life forms of kingdom Plantae. Plants acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations. It is a non-taxonomical term most often referring to LAND PLANTS. In broad sense it includes RHODOPHYTA and GLAUCOPHYTA along with VIRIDIPLANTAE. Plant
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D000693 Anaerobiosis The complete absence, or (loosely) the paucity, of gaseous or dissolved elemental oxygen in a given place or environment. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Anaerobic Metabolism,Anaerobic Metabolisms,Anaerobioses,Metabolism, Anaerobic,Metabolisms, Anaerobic
D001204 Ascorbate Oxidase An enzyme that converts ascorbic acid to dehydroascorbic acid. EC 1.10.3.3. Ascorbase,Ascorbino Dehydrogenase,L-Ascorbate Oxidase,Dehydrogenase, Ascorbino,L Ascorbate Oxidase,Oxidase, Ascorbate,Oxidase, L-Ascorbate
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D013053 Spectrophotometry The art or process of comparing photometrically the relative intensities of the light in different parts of the spectrum.

Related Publications

A Marchesini, and P M Kroneck
January 1983, Molecular and cellular biochemistry,
A Marchesini, and P M Kroneck
June 2019, EFSA journal. European Food Safety Authority,
A Marchesini, and P M Kroneck
August 2003, Acta crystallographica. Section D, Biological crystallography,
A Marchesini, and P M Kroneck
August 1968, Journal of biochemistry,
Copied contents to your clipboard!