Development of specific inhibitors of angiotensin I converting enzyme (kininase II). 1979

D W Cushman, and H S Cheung, and E F Sabo, and B Rubin, and M A Ondetti

UI MeSH Term Description Entries
D007703 Peptidyl-Dipeptidase A A peptidyl-dipeptidase that catalyzes the release of a C-terminal dipeptide, oligopeptide-|-Xaa-Yaa, when Xaa is not Pro, and Yaa is neither Asp nor Glu. Thus, conversion of ANGIOTENSIN I to ANGIOTENSIN II, with increase in vasoconstrictor activity, but no action on angiotensin II. It is also able to inactivate BRADYKININ, a potent vasodilator; and has a glycosidase activity which releases GPI-anchored proteins from the membrane by cleaving the mannose linkage in the GPI moiety. (From https://www.uniprot.org April 15, 2020). ACE1 Angiotensin-Converting Enzyme 1,ACE1 Protein,Angiotensin Converting Enzyme,Angiotensin Converting Enzyme 1,Antigens, CD143,CD143 Antigens,Dipeptidyl Carboxypeptidase I,Kininase II,Peptidase P,Angiotensin I-Converting Enzyme,Carboxycathepsin,Dipeptidyl Peptidase A,Kininase A,ACE1 Angiotensin Converting Enzyme 1,Angiotensin I Converting Enzyme,Carboxypeptidase I, Dipeptidyl,Peptidyl Dipeptidase A
D008961 Models, Structural A representation, generally small in scale, to show the structure, construction, or appearance of something. (From Random House Unabridged Dictionary, 2d ed) Model, Structural,Structural Model,Structural Models
D009842 Oligopeptides Peptides composed of between two and twelve amino acids. Oligopeptide
D011392 Proline A non-essential amino acid that is synthesized from GLUTAMIC ACID. It is an essential component of COLLAGEN and is important for proper functioning of joints and tendons. L-Proline,L Proline
D002216 Captopril A potent and specific inhibitor of PEPTIDYL-DIPEPTIDASE A. It blocks the conversion of ANGIOTENSIN I to ANGIOTENSIN II, a vasoconstrictor and important regulator of arterial blood pressure. Captopril acts to suppress the RENIN-ANGIOTENSIN SYSTEM and inhibits pressure responses to exogenous angiotensin. (S)-1-(3-Mercapto-2-methyl-1-oxopropyl)-L-proline,Capoten,Lopirin,SQ-14,225,SQ-14,534,SQ-14225,SQ-14534,SQ 14,225,SQ 14,534,SQ 14225,SQ 14534,SQ14,225,SQ14,534,SQ14225,SQ14534
D002384 Catalysis The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction. Catalyses
D000806 Angiotensin-Converting Enzyme Inhibitors A class of drugs whose main indications are the treatment of hypertension and heart failure. They exert their hemodynamic effect mainly by inhibiting the renin-angiotensin system. They also modulate sympathetic nervous system activity and increase prostaglandin synthesis. They cause mainly vasodilation and mild natriuresis without affecting heart rate and contractility. ACE Inhibitor,ACE Inhibitors,Angiotensin Converting Enzyme Inhibitor,Angiotensin I-Converting Enzyme Inhibitor,Angiotensin-Converting Enzyme Inhibitor,Kininase II Inhibitor,Kininase II Inhibitors,Angiotensin I-Converting Enzyme Inhibitors,Angiotensin-Converting Enzyme Antagonists,Antagonists, Angiotensin-Converting Enzyme,Antagonists, Kininase II,Inhibitors, ACE,Inhibitors, Angiotensin-Converting Enzyme,Inhibitors, Kininase II,Kininase II Antagonists,Angiotensin Converting Enzyme Antagonists,Angiotensin Converting Enzyme Inhibitors,Angiotensin I Converting Enzyme Inhibitor,Angiotensin I Converting Enzyme Inhibitors,Antagonists, Angiotensin Converting Enzyme,Enzyme Antagonists, Angiotensin-Converting,Enzyme Inhibitor, Angiotensin-Converting,Enzyme Inhibitors, Angiotensin-Converting,II Inhibitor, Kininase,Inhibitor, ACE,Inhibitor, Angiotensin-Converting Enzyme,Inhibitor, Kininase II,Inhibitors, Angiotensin Converting Enzyme
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D001667 Binding, Competitive The interaction of two or more substrates or ligands with the same binding site. The displacement of one by the other is used in quantitative and selective affinity measurements. Competitive Binding
D012910 Snake Venoms Solutions or mixtures of toxic and nontoxic substances elaborated by snake (Ophidia) salivary glands (Duvernoy's gland) for the purpose of killing prey or disabling predators and delivered by grooved or hollow fangs. They usually contain enzymes, toxins, and other factors. Duvernoy's Gland Secretion,Duvernoy's Secretion,Snake Toxin,Snake Toxins,Snake Venom,Duvernoy Gland Secretion,Duvernoy Secretion,Duvernoys Gland Secretion,Duvernoys Secretion,Secretion, Duvernoy's,Secretion, Duvernoy's Gland,Toxin, Snake,Venom, Snake

Related Publications

D W Cushman, and H S Cheung, and E F Sabo, and B Rubin, and M A Ondetti
January 1979, Advances in experimental medicine and biology,
D W Cushman, and H S Cheung, and E F Sabo, and B Rubin, and M A Ondetti
December 1979, Federation proceedings,
D W Cushman, and H S Cheung, and E F Sabo, and B Rubin, and M A Ondetti
March 1980, Experimental eye research,
D W Cushman, and H S Cheung, and E F Sabo, and B Rubin, and M A Ondetti
June 1972, Japanese circulation journal,
D W Cushman, and H S Cheung, and E F Sabo, and B Rubin, and M A Ondetti
December 1983, Biochemical pharmacology,
D W Cushman, and H S Cheung, and E F Sabo, and B Rubin, and M A Ondetti
April 1979, Life sciences,
D W Cushman, and H S Cheung, and E F Sabo, and B Rubin, and M A Ondetti
April 1986, Experientia,
D W Cushman, and H S Cheung, and E F Sabo, and B Rubin, and M A Ondetti
April 1971, The Journal of pharmacology and experimental therapeutics,
D W Cushman, and H S Cheung, and E F Sabo, and B Rubin, and M A Ondetti
February 1985, Biochemical Society transactions,
D W Cushman, and H S Cheung, and E F Sabo, and B Rubin, and M A Ondetti
January 1992, Agents and actions. Supplements,
Copied contents to your clipboard!