Programmed cell death in Parkinson's disease. 2012

Katerina Venderova, and David S Park
University of the Pacific, Thomas J. Long School of Pharmacy, Department of Physiology and Pharmacology, Stockton, CA 95211, USA. kvenderova@pacific.edu

Parkinson's disease is a debilitating disorder characterized by a progressive loss of dopaminergic neurons caused by programmed cell death. The aim of this review is to provide an up-to-date summary of the major programmed cell death pathways as they relate to PD. For a long time, programmed cell death has been synonymous with apoptosis but there now is evidence that other types of programmed cell death exist, such as autophagic cell death or programmed necrosis, and that these types of cell death are relevant to PD. The pathways and signals covered here include namely the death receptors, BCL-2 family, caspases, calpains, cdk5, p53, PARP-1, autophagy, mitophagy, mitochondrial fragmentation, and parthanatos. The review will present evidence from postmortem PD studies, toxin-induced models (especially MPTP/MPP+, 6-hydroxydopamine and rotenone), and from α-synuclein, LRRK2, Parkin, DJ-1, and PINK1 genetic models of PD, both in vitro and in vivo.

UI MeSH Term Description Entries
D009336 Necrosis The death of cells in an organ or tissue due to disease, injury or failure of the blood supply.
D010300 Parkinson Disease A progressive, degenerative neurologic disease characterized by a TREMOR that is maximal at rest, retropulsion (i.e. a tendency to fall backwards), rigidity, stooped posture, slowness of voluntary movements, and a masklike facial expression. Pathologic features include loss of melanin containing neurons in the substantia nigra and other pigmented nuclei of the brainstem. LEWY BODIES are present in the substantia nigra and locus coeruleus but may also be found in a related condition (LEWY BODY DISEASE, DIFFUSE) characterized by dementia in combination with varying degrees of parkinsonism. (Adams et al., Principles of Neurology, 6th ed, p1059, pp1067-75) Idiopathic Parkinson Disease,Lewy Body Parkinson Disease,Paralysis Agitans,Primary Parkinsonism,Idiopathic Parkinson's Disease,Lewy Body Parkinson's Disease,Parkinson Disease, Idiopathic,Parkinson's Disease,Parkinson's Disease, Idiopathic,Parkinson's Disease, Lewy Body,Parkinsonism, Primary
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004721 Endoplasmic Reticulum A system of cisternae in the CYTOPLASM of many cells. In places the endoplasmic reticulum is continuous with the plasma membrane (CELL MEMBRANE) or outer membrane of the nuclear envelope. If the outer surfaces of the endoplasmic reticulum membranes are coated with ribosomes, the endoplasmic reticulum is said to be rough-surfaced (ENDOPLASMIC RETICULUM, ROUGH); otherwise it is said to be smooth-surfaced (ENDOPLASMIC RETICULUM, SMOOTH). (King & Stansfield, A Dictionary of Genetics, 4th ed) Ergastoplasm,Reticulum, Endoplasmic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001343 Autophagy The segregation and degradation of various cytoplasmic constituents via engulfment by MULTIVESICULAR BODIES; VACUOLES; or AUTOPHAGOSOMES and their digestion by LYSOSOMES. It plays an important role in BIOLOGICAL METAMORPHOSIS and in the removal of bone by OSTEOCLASTS. Defective autophagy is associated with various diseases, including NEURODEGENERATIVE DISEASES and cancer. Autophagocytosis,ER-Phagy,Lipophagy,Nucleophagy,Reticulophagy,Ribophagy,Autophagy, Cellular,Cellular Autophagy,ER Phagy
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D051360 Cyclin-Dependent Kinase 5 A serine-threonine kinase that plays important roles in CELL DIFFERENTIATION; CELL MIGRATION; and CELL DEATH of NERVE CELLS. It is closely related to other CYCLIN-DEPENDENT KINASES but does not seem to participate in CELL CYCLE regulation. Cdk5 Protein Kinase,Cdc2-Related Kinase PSSALRE,Cdk5 Protein,Neuronal Cdc2-Like Protein Kinase,PSSALRE Protein,Cdc2 Related Kinase PSSALRE,Cyclin Dependent Kinase 5,Neuronal Cdc2 Like Protein Kinase,PSSALRE, Cdc2-Related Kinase,Protein Kinase, Cdk5
D053218 Receptors, Death Domain A family of cell surface receptors that signal via a conserved domain that extends into the cell CYTOPLASM. The conserved domain is referred to as a DEATH DOMAIN due to the fact that many of these receptors are involved in APOPTOSIS signaling pathways. Several DEATH DOMAIN RECEPTOR SIGNALING ADAPTOR PROTEINS can bind to the death domains of the activated receptors and through a complex series of interactions activate apoptotic mediators such as CASPASES. Death Domain Receptors,Death Receptor,Death Receptors,Receptors, DR Family,Receptors, Death Domain Family,DR Family Receptors,Receptor, Death
D019253 Proto-Oncogene Proteins c-bcl-2 Membrane proteins encoded by the BCL-2 GENES and serving as potent inhibitors of cell death by APOPTOSIS. The proteins are found on mitochondrial, microsomal, and NUCLEAR MEMBRANE sites within many cell types. Overexpression of bcl-2 proteins, due to a translocation of the gene, is associated with follicular lymphoma. bcl-2 Proto-Oncogene Proteins,c-bcl-2 Proteins,B-Cell Leukemia 2 Family Proteins,BCL2 Family Proteins,BCL2 Proteins,B Cell Leukemia 2 Family Proteins,Family Proteins, BCL2,Proteins, BCL2,Proteins, BCL2 Family,Proto Oncogene Proteins c bcl 2,Proto-Oncogene Proteins, bcl-2,bcl 2 Proto Oncogene Proteins,c bcl 2 Proteins,c-bcl-2, Proto-Oncogene Proteins

Related Publications

Katerina Venderova, and David S Park
January 2007, Handbook of clinical neurology,
Katerina Venderova, and David S Park
January 1998, Movement disorders : official journal of the Movement Disorder Society,
Katerina Venderova, and David S Park
January 2008, Parkinsonism & related disorders,
Katerina Venderova, and David S Park
July 2001, BioEssays : news and reviews in molecular, cellular and developmental biology,
Katerina Venderova, and David S Park
September 1998, Annals of neurology,
Katerina Venderova, and David S Park
May 2012, Antioxidants & redox signaling,
Katerina Venderova, and David S Park
April 2024, Experimental and therapeutic medicine,
Katerina Venderova, and David S Park
January 1992, Essays in biochemistry,
Katerina Venderova, and David S Park
September 2002, Journal of neurology,
Katerina Venderova, and David S Park
May 2008, Current molecular medicine,
Copied contents to your clipboard!