Interaction of metal ions with carboxylic and carboxamide groups in protein structures. 1990

P Chakrabarti
Department of Chemistry and Biochemistry, University of California, Los Angeles 90024.

An analysis of the geometry of metal binding by carboxylic and carboxamide groups in proteins is presented. Most of the ligands are from aspartic and glutamic acid side chains. Water molecules bound to carboxylate anions are known to interact with oxygen lone-pairs. However, metal ions are also found to approach the carboxylate group along the C-O direction. More metal ions are found to be along the syn than the anti lone-pair direction. This seems to be the result of the stability of the five-membered ring that is formed by the carboxylate anion hydrogen bonded to a ligand water molecule and the metal ion in the syn position. Ligand residues are usually from the helix, turn or regions with no regular secondary structure. Because of the steric interactions associated with bringing all the ligands around a metal center, a calcium ion can bind only near the ends of a helix; a metal, like zinc, with a low coordination number, can bind anywhere in the helix. Based on the analysis of the positions of water molecules in the metal coordination sphere, the sequence of the EF hand (a calcium-binding structure) is discussed.

UI MeSH Term Description Entries
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008670 Metals Electropositive chemical elements characterized by ductility, malleability, luster, and conductance of heat and electricity. They can replace the hydrogen of an acid and form bases with hydroxyl radicals. (Grant & Hackh's Chemical Dictionary, 5th ed) Metal
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D002135 Calcium-Binding Proteins Proteins to which calcium ions are bound. They can act as transport proteins, regulator proteins, or activator proteins. They typically contain EF HAND MOTIFS. Calcium Binding Protein,Calcium-Binding Protein,Calcium Binding Proteins,Binding Protein, Calcium,Binding Proteins, Calcium,Protein, Calcium Binding,Protein, Calcium-Binding
D002264 Carboxylic Acids Organic compounds containing the carboxy group (-COOH). This group of compounds includes amino acids and fatty acids. Carboxylic acids can be saturated, unsaturated, or aromatic. Carboxylic Acid,Acid, Carboxylic,Acids, Carboxylic
D006860 Hydrogen Bonding A low-energy attractive force between hydrogen and another element. It plays a major role in determining the properties of water, proteins, and other compounds. Hydrogen Bonds,Bond, Hydrogen,Hydrogen Bond
D015394 Molecular Structure The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds. Structure, Molecular,Molecular Structures,Structures, Molecular

Related Publications

P Chakrabarti
July 2007, The journal of physical chemistry. A,
P Chakrabarti
August 1989, International journal of peptide and protein research,
P Chakrabarti
August 1989, International journal of peptide and protein research,
P Chakrabarti
January 2000, Advances in experimental medicine and biology,
P Chakrabarti
April 1989, Biochemical and biophysical research communications,
Copied contents to your clipboard!