Elasmobranch rectal gland cell: autoradiographic localization of [3H]ouabain-sensitive Na, K-ATPase in rectal gland of dogfish, Squalus acanthias. 1979

J Eveloff, and K J Karnaky, and P Silva, and F H Epstein, and W B Kinter

Specific binding of radiolabeled inhibitor was employed to localize the Na-pump sites (Na,K-ATPase) in rectal gland epithelium, a NaCl-secreting osmoregulatory tissue which is particularly rich in pump sites. Slices of gland tissue from spiny dogfish were incubated in suitable [3H]ouabain-containing media and then prepared for Na,K-ATPase assay, measurement of radiolabel binding, or quantitative freeze-dry autoradiography at the light microscope level. Gross freezing or drying artifacts were excluded by comparison with additional aldehyde-fixed slices. Characterization experiments demonstrated high-affinity binding which correlated with Na,K-ATPase inhibition and half-saturated at approximately 5 microM [3H]ouabain. At this concentration, the normal half-loading time was approximately 1 h and low-affinity binding to nonspecific sites was negligible. Autoradiographs from both 1- and 4-h incubated slices showed approximately 85% of the bound [3H]ouabain to be localized within a 1-micrometer wide boundary region where the highly infolded basal-lateral cell membrane are closest to the mitochondria. These results establish that most of the enormous Na,K-ATPase activity associated with rectal gland epithelium is in the basal-lateral cell membrane facing interstitial fluid and not in the luminal membrane facing secreted fluid. Moreover, distribution along the basal-lateral membrane appears to be nonuniform with a higher density of enzyme sites close to mitochondria.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D010042 Ouabain A cardioactive glycoside consisting of rhamnose and ouabagenin, obtained from the seeds of Strophanthus gratus and other plants of the Apocynaceae; used like DIGITALIS. It is commonly used in cell biological studies as an inhibitor of the NA(+)-K(+)-EXCHANGING ATPASE. Acocantherin,G-Strophanthin,Acolongifloroside K,G Strophanthin
D004284 Dogfish Sharks of the family Squalidae, also called dogfish sharks. They comprise at least eight genera and 44 species. Their LIVER is valued for its oil and its flesh is often made into fertilizer. Squalidae,Dogfishes
D006651 Histocytochemistry Study of intracellular distribution of chemicals, reaction sites, enzymes, etc., by means of staining reactions, radioactive isotope uptake, selective metal distribution in electron microscopy, or other methods. Cytochemistry
D000254 Sodium-Potassium-Exchanging ATPase An enzyme that catalyzes the active transport system of sodium and potassium ions across the cell wall. Sodium and potassium ions are closely coupled with membrane ATPase which undergoes phosphorylation and dephosphorylation, thereby providing energy for transport of these ions against concentration gradients. ATPase, Sodium, Potassium,Adenosinetriphosphatase, Sodium, Potassium,Na(+)-K(+)-Exchanging ATPase,Na(+)-K(+)-Transporting ATPase,Potassium Pump,Sodium Pump,Sodium, Potassium ATPase,Sodium, Potassium Adenosinetriphosphatase,Sodium-Potassium Pump,Adenosine Triphosphatase, Sodium, Potassium,Na(+) K(+)-Transporting ATPase,Sodium, Potassium Adenosine Triphosphatase,ATPase Sodium, Potassium,ATPase, Sodium-Potassium-Exchanging,Adenosinetriphosphatase Sodium, Potassium,Pump, Potassium,Pump, Sodium,Pump, Sodium-Potassium,Sodium Potassium Exchanging ATPase,Sodium Potassium Pump
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001345 Autoradiography The making of a radiograph of an object or tissue by recording on a photographic plate the radiation emitted by radioactive material within the object. (Dorland, 27th ed) Radioautography
D001693 Biological Transport, Active The movement of materials across cell membranes and epithelial layers against an electrochemical gradient, requiring the expenditure of metabolic energy. Active Transport,Uphill Transport,Active Biological Transport,Biologic Transport, Active,Transport, Active Biological,Active Biologic Transport,Transport, Active,Transport, Active Biologic,Transport, Uphill
D012491 Salt Gland A compound tubular gland, located around the eyes and nasal passages in marine animals and birds, the physiology of which figures in water-electrolyte balance. The Pekin duck serves as a common research animal in salt gland studies. A rectal gland or rectal salt gland in the dogfish shark is attached at the junction of the intestine and cloaca and aids the kidneys in removing excess salts from the blood. (Storer, Usinger, Stebbins & Nybakken: General Zoology, 6th ed, p658) Rectal Gland,Gland, Rectal,Gland, Salt,Glands, Rectal,Glands, Salt,Rectal Glands,Salt Glands
D012754 Sharks A group of elongate elasmobranchs. Sharks are mostly marine fish, with certain species large and voracious. Shark

Related Publications

J Eveloff, and K J Karnaky, and P Silva, and F H Epstein, and W B Kinter
November 1976, Cell and tissue research,
J Eveloff, and K J Karnaky, and P Silva, and F H Epstein, and W B Kinter
June 1990, Biochimica et biophysica acta,
J Eveloff, and K J Karnaky, and P Silva, and F H Epstein, and W B Kinter
January 1983, The Journal of membrane biology,
J Eveloff, and K J Karnaky, and P Silva, and F H Epstein, and W B Kinter
January 1988, Methods in enzymology,
J Eveloff, and K J Karnaky, and P Silva, and F H Epstein, and W B Kinter
February 1973, Comparative biochemistry and physiology. A, Comparative physiology,
J Eveloff, and K J Karnaky, and P Silva, and F H Epstein, and W B Kinter
December 1980, Biochimica et biophysica acta,
J Eveloff, and K J Karnaky, and P Silva, and F H Epstein, and W B Kinter
March 1999, Pflugers Archiv : European journal of physiology,
J Eveloff, and K J Karnaky, and P Silva, and F H Epstein, and W B Kinter
January 1988, Comparative biochemistry and physiology. A, Comparative physiology,
J Eveloff, and K J Karnaky, and P Silva, and F H Epstein, and W B Kinter
July 1999, Pflugers Archiv : European journal of physiology,
J Eveloff, and K J Karnaky, and P Silva, and F H Epstein, and W B Kinter
May 1982, Biochimica et biophysica acta,
Copied contents to your clipboard!