Vinpocetine suppresses pathological vascular remodeling by inhibiting vascular smooth muscle cell proliferation and migration. 2012

Yujun Cai, and Walter E Knight, and Shujie Guo, and Jian-Dong Li, and Peter A Knight, and Chen Yan
Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave, Box CVRI, Rochester, NY 14642, USA.

Abnormal vascular smooth muscle cell (SMC) activation is associated with various vascular disorders such as atherosclerosis, in-stent restenosis, vein graft disease, and transplantation-associated vasculopathy. Vinpocetine, a derivative of the alkaloid vincamine, has long been used as a cerebral blood flow enhancer for treating cognitive impairment. However, its role in pathological vascular remodeling remains unexplored. Herein, we show that systemic administration of vinpocetine significantly reduced neointimal formation in carotid arteries after ligation injury. Vinpocetine also markedly decreased spontaneous remodeling of human saphenous vein explants in ex vivo culture. In cultured SMCs, vinpocetine dose-dependently suppressed cell proliferation and caused G1-phase cell cycle arrest, which is associated with a decrease in cyclin D1 and an increase in p27Kip1 levels. In addition, vinpocetine dose-dependently inhibited platelet-derived growth factor (PDGF)-stimulated SMC migration as determined by the two-dimensional migration assays and three-dimensional aortic medial explant invasive assay. Moreover, vinpocetine significantly reduced PDGF-induced type I collagen and fibronectin expression. It is noteworthy that PDGF-stimulated phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2), but not protein kinase B, was specifically inhibited by vinpocetine. Vinpocetine powerfully attenuated intracellular reactive oxidative species (ROS) production, which largely mediates the inhibitory effects of vinpocetine on ERK1/2 activation and SMC growth. Taken together, our results reveal a novel function of vinpocetine in attenuating neointimal hyperplasia and pathological vascular remodeling, at least partially through suppressing ROS production and ERK1/2 activation in SMCs. Given the safety profile of vinpocetine, this study provides insight into the therapeutic potential of vinpocetine in proliferative vascular disorders.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D009389 Neovascularization, Pathologic A pathologic process consisting of the proliferation of blood vessels in abnormal tissues or in abnormal positions. Angiogenesis, Pathologic,Angiogenesis, Pathological,Neovascularization, Pathological,Pathologic Angiogenesis,Pathologic Neovascularization,Pathological Angiogenesis,Pathological Neovascularization
D001973 Bromodeoxyuridine A nucleoside that substitutes for thymidine in DNA and thus acts as an antimetabolite. It causes breaks in chromosomes and has been proposed as an antiviral and antineoplastic agent. It has been given orphan drug status for use in the treatment of primary brain tumors. BUdR,BrdU,Bromouracil Deoxyriboside,Broxuridine,5-Bromo-2'-deoxyuridine,5-Bromodeoxyuridine,NSC-38297,5 Bromo 2' deoxyuridine,5 Bromodeoxyuridine,Deoxyriboside, Bromouracil
D002339 Carotid Arteries Either of the two principal arteries on both sides of the neck that supply blood to the head and neck; each divides into two branches, the internal carotid artery and the external carotid artery. Arteries, Carotid,Artery, Carotid,Carotid Artery
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D005109 Extracellular Matrix A meshwork-like substance found within the extracellular space and in association with the basement membrane of the cell surface. It promotes cellular proliferation and provides a supporting structure to which cells or cell lysates in culture dishes adhere. Matrix, Extracellular,Extracellular Matrices,Matrices, Extracellular
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin

Related Publications

Yujun Cai, and Walter E Knight, and Shujie Guo, and Jian-Dong Li, and Peter A Knight, and Chen Yan
January 2024, The Korean journal of physiology & pharmacology : official journal of the Korean Physiological Society and the Korean Society of Pharmacology,
Yujun Cai, and Walter E Knight, and Shujie Guo, and Jian-Dong Li, and Peter A Knight, and Chen Yan
January 2016, PloS one,
Yujun Cai, and Walter E Knight, and Shujie Guo, and Jian-Dong Li, and Peter A Knight, and Chen Yan
January 2018, Frontiers in pharmacology,
Yujun Cai, and Walter E Knight, and Shujie Guo, and Jian-Dong Li, and Peter A Knight, and Chen Yan
January 2015, Evidence-based complementary and alternative medicine : eCAM,
Yujun Cai, and Walter E Knight, and Shujie Guo, and Jian-Dong Li, and Peter A Knight, and Chen Yan
February 2014, Pulmonary pharmacology & therapeutics,
Yujun Cai, and Walter E Knight, and Shujie Guo, and Jian-Dong Li, and Peter A Knight, and Chen Yan
July 1999, The Journal of surgical research,
Yujun Cai, and Walter E Knight, and Shujie Guo, and Jian-Dong Li, and Peter A Knight, and Chen Yan
December 2020, Epigenomics,
Yujun Cai, and Walter E Knight, and Shujie Guo, and Jian-Dong Li, and Peter A Knight, and Chen Yan
January 2019, The Chinese journal of physiology,
Yujun Cai, and Walter E Knight, and Shujie Guo, and Jian-Dong Li, and Peter A Knight, and Chen Yan
August 2021, Journal of biochemical and molecular toxicology,
Yujun Cai, and Walter E Knight, and Shujie Guo, and Jian-Dong Li, and Peter A Knight, and Chen Yan
September 2019, Experimental and therapeutic medicine,
Copied contents to your clipboard!