Vacuolating cytotoxin A (VacA), a key toxin for Helicobacter pylori pathogenesis. 2012

Samuel L Palframan, and Terry Kwok, and Kipros Gabriel
Host Pathogens Molecular Biology Group, Department of Biochemistry and Molecular Biology, Monash University, Clayton VIC, Australia.

More than 50% of the world's population is infected with Helicobacter pylori (H. pylori). Chronic infection with this Gram-negative pathogen is associated with the development of peptic ulcers and is linked to an increased risk of gastric cancer. H. pylori secretes many proteinaceous factors that are important for initial colonization and subsequent persistence in the host stomach. One of the major protein toxins secreted by H. pylori is the Vacuolating cytotoxin A (VacA). After secretion from the bacteria via a type V autotransport secretion system, the 88 kDa VacA toxin (comprised of the p33 and p55 subunits) binds to host cells and is internalized, causing severe "vacuolation" characterized by the accumulation of large vesicles that possess hallmarks of both late endosomes and early lysosomes. The development of "vacuoles" has been attributed to the formation of VacA anion-selective channels in membranes. Apart from its vacuolating effects, it has recently become clear that VacA also directly affects mitochondrial function. Earlier studies suggested that the p33 subunit, but not the p55 subunit of VacA, could enter mitochondria to modulate organelle function. This raised the possibility that a mechanism separate from pore formation may be responsible for the effects of VacA on mitochondria, as crystallography studies and structural modeling predict that both subunits are required for a physiologically stable pore. It has also been suggested that the mitochondrial effects observed are due to indirect effects on pro-apoptotic proteins and direct effects on mitochondrial morphology-related processes. Other studies have shown that both the p55 and p33 subunits can indeed be efficiently imported into mammalian-derived mitochondria raising the possibility that they could re-assemble to form a pore. Our review summarizes and consolidates the recent advances in VacA toxin research, with focus on the outstanding controversies in the field and the key remaining questions that need to be addressed.

UI MeSH Term Description Entries
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D005057 Eukaryotic Cells Cells of the higher organisms, containing a true nucleus bounded by a nuclear membrane. Cell, Eukaryotic,Cells, Eukaryotic,Eukaryotic Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D014617 Vacuoles Any spaces or cavities within a cell. They may function in digestion, storage, secretion, or excretion. Vacuole
D016480 Helicobacter pylori A spiral bacterium active as a human gastric pathogen. It is a gram-negative, urease-positive, curved or slightly spiral organism initially isolated in 1982 from patients with lesions of gastritis or peptic ulcers in Western Australia. Helicobacter pylori was originally classified in the genus CAMPYLOBACTER, but RNA sequencing, cellular fatty acid profiles, growth patterns, and other taxonomic characteristics indicate that the micro-organism should be included in the genus HELICOBACTER. It has been officially transferred to Helicobacter gen. nov. (see Int J Syst Bacteriol 1989 Oct;39(4):297-405). Campylobacter pylori,Campylobacter pylori subsp. pylori,Campylobacter pyloridis,Helicobacter nemestrinae
D037521 Virulence Factors Those components of an organism that determine its capacity to cause disease but are not required for its viability per se. Two classes have been characterized: TOXINS, BIOLOGICAL and surface adhesion molecules that effect the ability of the microorganism to invade and colonize a host. (From Davis et al., Microbiology, 4th ed. p486) Pathogenicity Factor,Pathogenicity Factors,Virulence Factor,Factor, Pathogenicity,Factor, Virulence,Factors, Pathogenicity,Factors, Virulence

Related Publications

Samuel L Palframan, and Terry Kwok, and Kipros Gabriel
February 2002, Japanese journal of infectious diseases,
Samuel L Palframan, and Terry Kwok, and Kipros Gabriel
January 2010, The Tohoku journal of experimental medicine,
Samuel L Palframan, and Terry Kwok, and Kipros Gabriel
August 2016, Toxicon : official journal of the International Society on Toxinology,
Samuel L Palframan, and Terry Kwok, and Kipros Gabriel
December 2004, Journal of biochemistry,
Samuel L Palframan, and Terry Kwok, and Kipros Gabriel
June 2010, Glycobiology,
Samuel L Palframan, and Terry Kwok, and Kipros Gabriel
April 2007, Microbes and infection,
Samuel L Palframan, and Terry Kwok, and Kipros Gabriel
February 2002, Nihon rinsho. Japanese journal of clinical medicine,
Samuel L Palframan, and Terry Kwok, and Kipros Gabriel
July 2000, Molecular microbiology,
Samuel L Palframan, and Terry Kwok, and Kipros Gabriel
January 2001, Nihon saikingaku zasshi. Japanese journal of bacteriology,
Samuel L Palframan, and Terry Kwok, and Kipros Gabriel
January 2011, International journal of molecular sciences,
Copied contents to your clipboard!