Development and regulation of growth and differentiated function in human and subhuman primate fetal gonads. 1990

J Rabinovici, and R B Jaffe
Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco 94143.

We have attempted to summarize the research on primate fetal gonadal development that has occurred over the past three decades. Many similarities exist between fetal gonadal development in human and subhuman primates; therefore, comparisons and analogies between these species can be made. Fetal gonadal development is a complex process dependent on timely maturation and differentiation of several cell types with different functions. Adequate development is important for normal sexual development and intact adult fertility potential as well as for intrauterine priming of neural centers in the central nervous system. While the fetal primate testis is active in steroidogenesis, the fetal ovary seems to be quiescent throughout most of gestation, although some ovarian steroidogenic enzymes have been demonstrated. Growth and development of both gonads are controlled during late gestation at least in part by pituitary hormones, while earlier in gestation other yet undefined regulators (placental, intragonadal) likely also are active. The main goal of this review was to demonstrate that gonadal growth and differentiation, both in males and females, is regulated by endocrine factors as well as by intragonadal, autocrine/paracrine agents. Although many parts of the puzzle are still missing it is probable that, similar to fetal development of other endocrine tissues and to events in postnatal gonads, these local regulators have important functions. Currently, primate fetal gonadal research is lacking in at least two key aspects: 1) the definition of paracrine and autocrine nonsteroidal factors that are involved in the regulation of gonadal growth and differentiation in vitro; and 2) in vivo studies in subhuman primates that might better help to clarify the biological roles of the multiple extra- and intragonadal hormones and their complex interactions. To date, the regulation of gonadal steroidogenesis has been investigated more thoroughly than the regulation of gonadal growth. Most of our knowledge stems from observations of gonadal development in anencephalics or subhuman primates after pituitary ablation. Because of the constraints of small organ size and limitation of material, studies of fetal primate gonadal development have been limited. Given such limitations, new molecular biological techniques, including polymerase chain reaction and in situ hybridization, may provide the means of addressing these questions. Further, because of these limitations, sensitive cell separation techniques need to be developed to achieve enriched primary gonadal cell cultures from individual gonads.

UI MeSH Term Description Entries
D008297 Male Males
D010053 Ovary The reproductive organ (GONADS) in female animals. In vertebrates, the ovary contains two functional parts: the OVARIAN FOLLICLE for the production of female germ cells (OOGENESIS); and the endocrine cells (GRANULOSA CELLS; THECA CELLS; and LUTEAL CELLS) for the production of ESTROGENS and PROGESTERONE. Ovaries
D011323 Primates An order of mammals consisting of more than 300 species that include LEMURS; LORISIDAE; TARSIERS; MONKEYS; and HOMINIDS. They are characterized by a relatively large brain when compared with other terrestrial mammals, forward-facing eyes, the presence of a CALCARINE SULCUS, and specialized MECHANORECEPTORS in the hands and feet which allow the perception of light touch. Primate
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D005260 Female Females
D005333 Fetus The unborn young of a viviparous mammal, in the postembryonic period, after the major structures have been outlined. In humans, the unborn young from the end of the eighth week after CONCEPTION until BIRTH, as distinguished from the earlier EMBRYO, MAMMALIAN. Fetal Structures,Fetal Tissue,Fetuses,Mummified Fetus,Retained Fetus,Fetal Structure,Fetal Tissues,Fetus, Mummified,Fetus, Retained,Structure, Fetal,Structures, Fetal,Tissue, Fetal,Tissues, Fetal
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013737 Testis The male gonad containing two functional parts: the SEMINIFEROUS TUBULES for the production and transport of male germ cells (SPERMATOGENESIS) and the interstitial compartment containing LEYDIG CELLS that produce ANDROGENS. Testicles,Testes,Testicle

Related Publications

J Rabinovici, and R B Jaffe
January 1969, The Journal of clinical investigation,
J Rabinovici, and R B Jaffe
August 1971, American journal of obstetrics and gynecology,
J Rabinovici, and R B Jaffe
January 1981, Neurobehavioral toxicology and teratology,
J Rabinovici, and R B Jaffe
March 1980, Journal of reproduction and fertility,
J Rabinovici, and R B Jaffe
July 1974, American journal of surgery,
J Rabinovici, and R B Jaffe
October 2010, The Journal of endocrinology,
J Rabinovici, and R B Jaffe
January 1977, Biology of the neonate,
J Rabinovici, and R B Jaffe
January 1965, Acta cardiologica,
J Rabinovici, and R B Jaffe
September 1978, American journal of veterinary research,
J Rabinovici, and R B Jaffe
January 1981, Recent progress in hormone research,
Copied contents to your clipboard!