UV inactivation of the biological activity of defective interfering particles generated by vesicular stomatitis virus. 1979

P H Bay, and M E Reichmann

UV inactivation of vesicular stomatitis virus and its defective interfering (DI) particles was measured in order to obtain the target size for interference. In the case of DI particles whose genomes mapped at the 5' end of the virion RNA, this target size corresponded to the entire DI particle RNA molecule regardless of whether it amounted to 10, 30, or 50% of the viral genome. These data were interpreted as demonstrating that both termini of the DI particle RNAs were required for their replication and for interference with virion RNA replication. The unique heat-resistant DI particle, with an RNA molecule corresponding to the 3' half of the viral genome, exhibited an inactivation target size of approximately 42% of its RNA molecule with respect to both homotypic and heterotypic interference. Unlike other DI particles, this particle interfered with virion primary transcription. The unusual inactivation target size of the heat-resistant DI particle was interpreted as being a compromise between the requirements for replication of its genome and those for interference with virion primary transcription.

UI MeSH Term Description Entries
D003673 Defective Viruses Viruses which lack a complete genome so that they cannot completely replicate or cannot form a protein coat. Some are host-dependent defectives, meaning they can replicate only in cell systems which provide the particular genetic function which they lack. Others, called SATELLITE VIRUSES, are able to replicate only when their genetic defect is complemented by a helper virus. Incomplete Viruses,Defective Hybrids,Defective Hybrid,Defective Virus,Hybrid, Defective,Hybrids, Defective,Incomplete Virus,Virus, Defective,Virus, Incomplete,Viruses, Defective,Viruses, Incomplete
D005814 Genes, Viral The functional hereditary units of VIRUSES. Viral Genes,Gene, Viral,Viral Gene
D012367 RNA, Viral Ribonucleic acid that makes up the genetic material of viruses. Viral RNA
D014466 Ultraviolet Rays That portion of the electromagnetic spectrum immediately below the visible range and extending into the x-ray frequencies. The longer wavelengths (near-UV or biotic or vital rays) are necessary for the endogenous synthesis of vitamin D and are also called antirachitic rays; the shorter, ionizing wavelengths (far-UV or abiotic or extravital rays) are viricidal, bactericidal, mutagenic, and carcinogenic and are used as disinfectants. Actinic Rays,Black Light, Ultraviolet,UV Light,UV Radiation,Ultra-Violet Rays,Ultraviolet Light,Ultraviolet Radiation,Actinic Ray,Light, UV,Light, Ultraviolet,Radiation, UV,Radiation, Ultraviolet,Ray, Actinic,Ray, Ultra-Violet,Ray, Ultraviolet,Ultra Violet Rays,Ultra-Violet Ray,Ultraviolet Black Light,Ultraviolet Black Lights,Ultraviolet Radiations,Ultraviolet Ray
D014721 Vesicular stomatitis Indiana virus The type species of VESICULOVIRUS causing a disease symptomatically similar to FOOT-AND-MOUTH DISEASE in cattle, horses, and pigs. It may be transmitted to other species including humans, where it causes influenza-like symptoms. Vesicular stomatitis-Indiana virus
D014771 Virion The infective system of a virus, composed of the viral genome, a protein core, and a protein coat called a capsid, which may be naked or enclosed in a lipoprotein envelope called the peplos. Virus Particle,Viral Particle,Viral Particles,Particle, Viral,Particle, Virus,Particles, Viral,Particles, Virus,Virions,Virus Particles

Related Publications

P H Bay, and M E Reichmann
January 1982, Journal of virology,
P H Bay, and M E Reichmann
April 1974, The Journal of infectious diseases,
P H Bay, and M E Reichmann
January 1980, Annals of the New York Academy of Sciences,
P H Bay, and M E Reichmann
January 1978, The Journal of general virology,
Copied contents to your clipboard!