Regulation of metallothionein gene expression. 1990

G K Andrews
Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City 66103.

The metallothioneins are small, cysteine-rich proteins that have the capacity for high affinity binding of heavy metal ions, and whose synthesis is regulated by metal ion concentrations. These properties suggest that they play pivotal roles in the metabolism of the relatively nontoxic essential metals (zinc and copper), as well as toxic heavy metals (cadmium), a concept supported by a variety of studies of cells in culture, as well as in intact animals. Expression of the metallothionein genes may have important implications in the nutritional status of the animal, in its response to stresses (inflammation, heavy metal toxicity), and in embryonic, fetal and neonatal development. The complementary DNAs and genes that encode the metallothioneins have been cloned and analyzed from a wide variety of eukaryotes. Striking features of the metallothioneins include: their high degree of amino acid sequence similarity (including conservation in the placement of cysteine residues in the molecule reflecting their function in metal binding); a conserved tripartite gene structure; and their transcriptional induction by metal ions, as well as other hormonal and environmental stimuli. The precise mechanisms and biochemical pathways by which cells transduce environmental signals into transcriptional induction of the metallothionein genes are beginning to be defined. Recent studies indicate that metal effects are exerted via positive trans-acting factors induced to interact with cis-acting DNA sequences in the promoter, in turn leading to transcriptional induction. However, the metallothionein gene promoter is structurally complex, and contains binding sites for a variety of nuclear proteins that likely regulate basal as well as induced levels of expression of these genes. Recent studies also suggest the possible involvement of post-transcriptional processes in the regulation of metallothionein levels in the cell. Furthermore, evidence of striking differences in the levels of metallothionein gene expression among various cell types in vivo have recently been documented. Although several detailed reviews of the metallothioneins have been published recently, this review will focus, in large part, on the molecular biology of the metallothioneins, with particular emphasis on recent advances in our understanding of the mechanisms regulating expression of these interesting and important genes. Given the large volume of literature on the metallothioneins and the space limitations of this review, it is impossible to comprehensively cite the studies of each of my colleagues who have contributed so much to this field. Instead the reader is often directed to reviews of this subject for much of the earlier literature, and emphasis is placed on more current publications in this field.

UI MeSH Term Description Entries
D008668 Metallothionein A low-molecular-weight (approx. 10 kD) protein occurring in the cytoplasm of kidney cortex and liver. It is rich in cysteinyl residues and contains no aromatic amino acids. Metallothionein shows high affinity for bivalent heavy metals. Isometallothionein,Metallothionein A,Metallothionein B,Metallothionein I,Metallothionein II,Metallothionein IIA
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

G K Andrews
January 2001, Progress in nucleic acid research and molecular biology,
G K Andrews
January 1994, Biological signals,
G K Andrews
August 1987, Biochemical Society transactions,
G K Andrews
August 2020, International journal of molecular sciences,
G K Andrews
January 2004, Marine environmental research,
G K Andrews
December 1986, The American journal of physiology,
G K Andrews
January 1998, Progress in nucleic acid research and molecular biology,
Copied contents to your clipboard!