| D008861 |
Microsomes |
Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) |
Microsome |
|
| D003510 |
Cyclohexanes |
Six-carbon alicyclic hydrocarbons. |
|
|
| D004305 |
Dose-Response Relationship, Drug |
The relationship between the dose of an administered drug and the response of the organism to the drug. |
Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response |
|
| D006801 |
Humans |
Members of the species Homo sapiens. |
Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man |
|
| D001562 |
Benzimidazoles |
Compounds with a BENZENE fused to IMIDAZOLES. |
|
|
| D013329 |
Structure-Activity Relationship |
The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. |
Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships |
|
| D015195 |
Drug Design |
The molecular designing of drugs for specific purposes (such as DNA-binding, enzyme inhibition, anti-cancer efficacy, etc.) based on knowledge of molecular properties such as activity of functional groups, molecular geometry, and electronic structure, and also on information cataloged on analogous molecules. Drug design is generally computer-assisted molecular modeling and does not include PHARMACOKINETICS, dosage analysis, or drug administration analysis. |
Computer-Aided Drug Design,Computerized Drug Design,Drug Modeling,Pharmaceutical Design,Computer Aided Drug Design,Computer-Aided Drug Designs,Computerized Drug Designs,Design, Pharmaceutical,Drug Design, Computer-Aided,Drug Design, Computerized,Drug Designs,Drug Modelings,Pharmaceutical Designs |
|
| D015394 |
Molecular Structure |
The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds. |
Structure, Molecular,Molecular Structures,Structures, Molecular |
|
| D054390 |
Receptors, CCR2 |
CCR receptors with specificity for CHEMOKINE CCL2 and several other CCL2-related chemokines. They are expressed at high levels in T-LYMPHOCYTES; B-LYMPHOCYTES; MACROPHAGES; BASOPHILS; and NK CELLS. |
Antigens, CD192,CC Chemokine Receptor 2,CCR2 Receptors,CD192 Antigens,CC CKR2B,CC Chemokine Receptor-2,CC Chemokine Receptors 2,CCR-2A MCP-1 Receptor,CCR2 Receptor,CCR2a Receptor,CCR2b Receptor,CCR2b Receptors,MCP-1 Receptor,MCP-1 Receptor 2B,MCP-1 Receptor CCR-2A,MCP-1 Receptors,MCP-1RA,MCP-1RB,Monocyte Chemoattractant Protein 1 Receptor,CCR 2A MCP 1 Receptor,Chemokine Receptor-2, CC,MCP 1 Receptor,MCP 1 Receptor 2B,MCP 1 Receptor CCR 2A,MCP 1 Receptors,MCP-1 Receptor, CCR-2A,Receptor CCR-2A, MCP-1,Receptor, CCR-2A MCP-1,Receptor, CCR2,Receptor, CCR2a,Receptor, CCR2b,Receptor, MCP-1,Receptor-2, CC Chemokine,Receptors, CCR2b,Receptors, MCP-1 |
|