Enhanced binding of trigonal DNA-carbohydrate conjugates to lectin. 2012

Masayuki Matsui, and Yasuhito Ebara
Graduate School of Science and Technology, Kobe University, 3-11 Tsurukabuto, Nada-ku, Kobe 657-8501, Japan.

Novel trigonal DNA-carbohydrate conjugates were prepared and evaluated to explore efficient carbohydrate-lectin interactions. Carbohydrate-modified oligonucleotides were enzymatically prepared, then hybridized to form 3-way junction DNAs. The thermal stabilities of the junctions were assessed by UV melting analysis and formation of constructs was confirmed by gel electrophoresis. Fluorescence titration assays revealed that the trigonal DNA-carbohydrate conjugates exhibit high affinity to lectins depending on the distribution of carbohydrates presented in each arm. These results suggest that self-assembled 3-way DNA architectures could offer a useful platform for controlling the spatial distribution of carbohydrates on conjugates and achieving more efficient molecular recognition.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D002236 Carbohydrate Conformation The characteristic 3-dimensional shape of a carbohydrate. Carbohydrate Linkage,Carbohydrate Conformations,Carbohydrate Linkages,Conformation, Carbohydrate,Conformations, Carbohydrate,Linkage, Carbohydrate,Linkages, Carbohydrate
D002241 Carbohydrates A class of organic compounds composed of carbon, hydrogen, and oxygen in a ratio of Cn(H2O)n. The largest class of organic compounds, including STARCH; GLYCOGEN; CELLULOSE; POLYSACCHARIDES; and simple MONOSACCHARIDES. Carbohydrate
D003208 Concanavalin A A MANNOSE/GLUCOSE binding lectin isolated from the jack bean (Canavalia ensiformis). It is a potent mitogen used to stimulate cell proliferation in lymphocytes, primarily T-lymphocyte, cultures.
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D037102 Lectins Proteins that share the common characteristic of binding to carbohydrates. Some ANTIBODIES and carbohydrate-metabolizing proteins (ENZYMES) also bind to carbohydrates, however they are not considered lectins. PLANT LECTINS are carbohydrate-binding proteins that have been primarily identified by their hemagglutinating activity (HEMAGGLUTININS). However, a variety of lectins occur in animal species where they serve diverse array of functions through specific carbohydrate recognition. Animal Lectin,Animal Lectins,Isolectins,Lectin,Isolectin,Lectin, Animal,Lectins, Animal

Related Publications

Masayuki Matsui, and Yasuhito Ebara
January 2000, Bioconjugate chemistry,
Masayuki Matsui, and Yasuhito Ebara
August 1986, Carbohydrate research,
Masayuki Matsui, and Yasuhito Ebara
June 1991, The Journal of biological chemistry,
Masayuki Matsui, and Yasuhito Ebara
January 2006, Bioconjugate chemistry,
Masayuki Matsui, and Yasuhito Ebara
January 1992, The Journal of biological chemistry,
Masayuki Matsui, and Yasuhito Ebara
July 1977, Experientia,
Masayuki Matsui, and Yasuhito Ebara
January 1994, Methods in enzymology,
Masayuki Matsui, and Yasuhito Ebara
February 1982, Biochimica et biophysica acta,
Masayuki Matsui, and Yasuhito Ebara
December 2007, Biochemical and biophysical research communications,
Copied contents to your clipboard!