The regulation of cell proliferation by calcium and cyclic AMP. 1979

J F Whitfield, and A L Boynton, and J P MacManus, and M Sikorska, and B K Tsang

Calcium, in partnership with cyclic AMP, controls the proliferation of non-tumorigenic cells in vitro and in vivo. While it does not seem to be involved in the proliferative activation of cells such as hepatocytes (in vivo) or small lymphocytes (in vitro), it does control two later stages of prereplicative (G1) development. It must be one of the very many regulatory and permissive factors affecting early prereplicative development, because severe calcium deprivation reversibly arrests some types of cell early in the G1 phase of their growth-division cycle in vitro. However, calcium more specifically and much more often regulates a later (mid or late G1) stage of prereplicative development. Thus, regardless of its severity or the type of cell, calcium deprivation in vitro or in vivo reversibly stops proliferative development at that part of the G1 phase in which the cellular cyclic AMP content transiently rises and the synthesis of the four deoxyribonucleotides begins. The evidence points to calcium and the cyclic AMP surge being co-generators of the signal committing the cell to DNA synthesis. The evidence is best explained so far by the cyclic AMP surge causing a surge of calcium ions which combine with molecules of the multi-purpose, calcium-dependent, regulator protein calmodulin (CDR) somewhere between the cell surface and the cytosol. The resulting Ca-calmodulin complexes then stimulate many different (and possibly membrane-associated) enzymes such as protein kinases, one of which produces the DNA-synthetic initiator. Calcium has little or no influence on the proliferation of tumor cells. Some possible explanations of this very important loss of control are considered.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D009369 Neoplasms New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms. Benign Neoplasm,Cancer,Malignant Neoplasm,Tumor,Tumors,Benign Neoplasms,Malignancy,Malignant Neoplasms,Neoplasia,Neoplasm,Neoplasms, Benign,Cancers,Malignancies,Neoplasias,Neoplasm, Benign,Neoplasm, Malignant,Neoplasms, Malignant
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002147 Calmodulin A heat-stable, low-molecular-weight activator protein found mainly in the brain and heart. The binding of calcium ions to this protein allows this protein to bind to cyclic nucleotide phosphodiesterases and to adenyl cyclase with subsequent activation. Thereby this protein modulates cyclic AMP and cyclic GMP levels. Calcium-Dependent Activator Protein,Calcium-Dependent Regulator,Bovine Activator Protein,Cyclic AMP-Phosphodiesterase Activator,Phosphodiesterase Activating Factor,Phosphodiesterase Activator Protein,Phosphodiesterase Protein Activator,Regulator, Calcium-Dependent,AMP-Phosphodiesterase Activator, Cyclic,Activating Factor, Phosphodiesterase,Activator Protein, Bovine,Activator Protein, Calcium-Dependent,Activator Protein, Phosphodiesterase,Activator, Cyclic AMP-Phosphodiesterase,Activator, Phosphodiesterase Protein,Calcium Dependent Activator Protein,Calcium Dependent Regulator,Cyclic AMP Phosphodiesterase Activator,Factor, Phosphodiesterase Activating,Protein Activator, Phosphodiesterase,Protein, Bovine Activator,Protein, Calcium-Dependent Activator,Protein, Phosphodiesterase Activator,Regulator, Calcium Dependent
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D006152 Cyclic GMP Guanosine cyclic 3',5'-(hydrogen phosphate). A guanine nucleotide containing one phosphate group which is esterified to the sugar moiety in both the 3'- and 5'-positions. It is a cellular regulatory agent and has been described as a second messenger. Its levels increase in response to a variety of hormones, including acetylcholine, insulin, and oxytocin and it has been found to activate specific protein kinases. (From Merck Index, 11th ed) Guanosine Cyclic 3',5'-Monophosphate,Guanosine Cyclic 3,5 Monophosphate,Guanosine Cyclic Monophosphate,Guanosine Cyclic-3',5'-Monophosphate,3',5'-Monophosphate, Guanosine Cyclic,Cyclic 3',5'-Monophosphate, Guanosine,Cyclic Monophosphate, Guanosine,Cyclic-3',5'-Monophosphate, Guanosine,GMP, Cyclic,Guanosine Cyclic 3',5' Monophosphate,Monophosphate, Guanosine Cyclic

Related Publications

J F Whitfield, and A L Boynton, and J P MacManus, and M Sikorska, and B K Tsang
December 1971, Experimental cell research,
J F Whitfield, and A L Boynton, and J P MacManus, and M Sikorska, and B K Tsang
January 1979, Advances in cyclic nucleotide research,
J F Whitfield, and A L Boynton, and J P MacManus, and M Sikorska, and B K Tsang
January 1996, Basic research in cardiology,
J F Whitfield, and A L Boynton, and J P MacManus, and M Sikorska, and B K Tsang
January 1972, Nature,
J F Whitfield, and A L Boynton, and J P MacManus, and M Sikorska, and B K Tsang
July 1973, Nutrition reviews,
J F Whitfield, and A L Boynton, and J P MacManus, and M Sikorska, and B K Tsang
May 2002, Journal of neurochemistry,
J F Whitfield, and A L Boynton, and J P MacManus, and M Sikorska, and B K Tsang
January 2004, Bulletin et memoires de l'Academie royale de medecine de Belgique,
J F Whitfield, and A L Boynton, and J P MacManus, and M Sikorska, and B K Tsang
February 1989, Trends in biochemical sciences,
J F Whitfield, and A L Boynton, and J P MacManus, and M Sikorska, and B K Tsang
June 1974, Prostaglandins,
J F Whitfield, and A L Boynton, and J P MacManus, and M Sikorska, and B K Tsang
January 1979, Proceedings of the Western Pharmacology Society,
Copied contents to your clipboard!