Endocytosis of the seven-transmembrane RGS1 protein activates G-protein-coupled signalling in Arabidopsis. 2012

Daisuke Urano, and Nguyen Phan, and Janice C Jones, and Jing Yang, and Jirong Huang, and Jeffrey Grigston, and J Philip Taylor, and Alan M Jones
Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.

Signal transduction typically begins by ligand-dependent activation of a concomitant partner that is otherwise in its resting state. However, in cases where signal activation is constitutive by default, the mechanism of regulation is unknown. The Arabidopsis thaliana heterotrimeric Gα protein self-activates without accessory proteins, and is kept in its resting state by the negative regulator, AtRGS1 (regulator of G-protein signalling 1), which is the prototype of a seven-transmembrane receptor fused with an RGS domain. Endocytosis of AtRGS1 by ligand-dependent endocytosis physically uncouples the GTPase-accelerating activity of AtRGS1 from the Gα protein, permitting sustained activation. Phosphorylation of AtRGS1 by AtWNK8 kinase causes AtRGS1 endocytosis, required for both G-protein-mediated sugar signalling and cell proliferation. In animals, receptor endocytosis results in signal desensitization, whereas in plants, endocytosis results in signal activation. These findings reveal how different organisms rearrange a regulatory system to result in opposite outcomes using similar phosphorylation-dependent endocytosis mechanisms.

UI MeSH Term Description Entries
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D004705 Endocytosis Cellular uptake of extracellular materials within membrane-limited vacuoles or microvesicles. ENDOSOMES play a central role in endocytosis. Endocytoses
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D017346 Protein Serine-Threonine Kinases A group of enzymes that catalyzes the phosphorylation of serine or threonine residues in proteins, with ATP or other nucleotides as phosphate donors. Protein-Serine-Threonine Kinases,Serine-Threonine Protein Kinase,Serine-Threonine Protein Kinases,Protein-Serine Kinase,Protein-Serine-Threonine Kinase,Protein-Threonine Kinase,Serine Kinase,Serine-Threonine Kinase,Serine-Threonine Kinases,Threonine Kinase,Kinase, Protein-Serine,Kinase, Protein-Serine-Threonine,Kinase, Protein-Threonine,Kinase, Serine-Threonine,Kinases, Protein Serine-Threonine,Kinases, Protein-Serine-Threonine,Kinases, Serine-Threonine,Protein Kinase, Serine-Threonine,Protein Kinases, Serine-Threonine,Protein Serine Kinase,Protein Serine Threonine Kinase,Protein Serine Threonine Kinases,Protein Threonine Kinase,Serine Threonine Kinase,Serine Threonine Kinases,Serine Threonine Protein Kinase,Serine Threonine Protein Kinases
D017360 Arabidopsis A plant genus of the family BRASSICACEAE that contains ARABIDOPSIS PROTEINS and MADS DOMAIN PROTEINS. The species A. thaliana is used for experiments in classical plant genetics as well as molecular genetic studies in plant physiology, biochemistry, and development. Arabidopsis thaliana,Cress, Mouse-ear,A. thaliana,A. thalianas,Arabidopses,Arabidopsis thalianas,Cress, Mouse ear,Cresses, Mouse-ear,Mouse-ear Cress,Mouse-ear Cresses,thaliana, A.,thaliana, Arabidopsis,thalianas, A.
D049109 Cell Proliferation All of the processes involved in increasing CELL NUMBER including CELL DIVISION. Cell Growth in Number,Cellular Proliferation,Cell Multiplication,Cell Number Growth,Growth, Cell Number,Multiplication, Cell,Number Growth, Cell,Proliferation, Cell,Proliferation, Cellular
D019204 GTP-Binding Proteins Regulatory proteins that act as molecular switches. They control a wide range of biological processes including: receptor signaling, intracellular signal transduction pathways, and protein synthesis. Their activity is regulated by factors that control their ability to bind to and hydrolyze GTP to GDP. EC 3.6.1.-. G-Proteins,GTP-Regulatory Proteins,Guanine Nucleotide Regulatory Proteins,G-Protein,GTP-Binding Protein,GTP-Regulatory Protein,Guanine Nucleotide Coupling Protein,G Protein,G Proteins,GTP Binding Protein,GTP Binding Proteins,GTP Regulatory Protein,GTP Regulatory Proteins,Protein, GTP-Binding,Protein, GTP-Regulatory,Proteins, GTP-Binding,Proteins, GTP-Regulatory
D020710 RGS Proteins A large family of evolutionarily conserved proteins that function as negative regulators of HETEROTRIMERIC GTP-BINDING PROTEINS. RGS PROTEINS act by increasing the GTPase activity of the G alpha subunit of a heterotrimeric GTP-binding protein, causing it to revert to its inactive (GDP-bound) form. Regulators of G-Protein Signaling Proteins,RGS Protein (G-Protein Signaling),Regulators of G Protein Signaling Proteins
D029681 Arabidopsis Proteins Proteins that originate from plants species belonging to the genus ARABIDOPSIS. The most intensely studied species of Arabidopsis, Arabidopsis thaliana, is commonly used in laboratory experiments. Arabidopsis thaliana Proteins,Thale Cress Proteins,Proteins, Arabidopsis thaliana,thaliana Proteins, Arabidopsis

Related Publications

Daisuke Urano, and Nguyen Phan, and Janice C Jones, and Jing Yang, and Jirong Huang, and Jeffrey Grigston, and J Philip Taylor, and Alan M Jones
August 2019, International journal of molecular sciences,
Daisuke Urano, and Nguyen Phan, and Janice C Jones, and Jing Yang, and Jirong Huang, and Jeffrey Grigston, and J Philip Taylor, and Alan M Jones
August 2001, Biochemical Society transactions,
Daisuke Urano, and Nguyen Phan, and Janice C Jones, and Jing Yang, and Jirong Huang, and Jeffrey Grigston, and J Philip Taylor, and Alan M Jones
January 2013, Molecular metabolism,
Daisuke Urano, and Nguyen Phan, and Janice C Jones, and Jing Yang, and Jirong Huang, and Jeffrey Grigston, and J Philip Taylor, and Alan M Jones
January 2010, Pharmacology,
Daisuke Urano, and Nguyen Phan, and Janice C Jones, and Jing Yang, and Jirong Huang, and Jeffrey Grigston, and J Philip Taylor, and Alan M Jones
January 2004, Medecine sciences : M/S,
Daisuke Urano, and Nguyen Phan, and Janice C Jones, and Jing Yang, and Jirong Huang, and Jeffrey Grigston, and J Philip Taylor, and Alan M Jones
May 1988, Nature,
Daisuke Urano, and Nguyen Phan, and Janice C Jones, and Jing Yang, and Jirong Huang, and Jeffrey Grigston, and J Philip Taylor, and Alan M Jones
October 2002, Current opinion in plant biology,
Daisuke Urano, and Nguyen Phan, and Janice C Jones, and Jing Yang, and Jirong Huang, and Jeffrey Grigston, and J Philip Taylor, and Alan M Jones
April 2011, The Journal of biological chemistry,
Daisuke Urano, and Nguyen Phan, and Janice C Jones, and Jing Yang, and Jirong Huang, and Jeffrey Grigston, and J Philip Taylor, and Alan M Jones
June 1996, Proceedings of the National Academy of Sciences of the United States of America,
Daisuke Urano, and Nguyen Phan, and Janice C Jones, and Jing Yang, and Jirong Huang, and Jeffrey Grigston, and J Philip Taylor, and Alan M Jones
May 1998, Cellular signalling,
Copied contents to your clipboard!