Treatment of acute metabolic acidosis: a pathophysiologic approach. 2012

Jeffrey A Kraut, and Nicolaos E Madias
Division of Nephrology, Veterans Health Administration Greater Los Angeles Heathcare System, 11301 Wilshire Boulevard, Los Angeles, CA 90073, USA. jkraut@ucla.edu

Acute metabolic acidosis is associated with increased morbidity and mortality because of its depressive effects on cardiovascular function, facilitation of cardiac arrhythmias, stimulation of inflammation, suppression of the immune response, and other adverse effects. Appropriate evaluation of acute metabolic acidosis includes assessment of acid-base parameters, including pH, partial pressure of CO(2) and HCO(3)(-) concentration in arterial blood in stable patients, and also in central venous blood in patients with impaired tissue perfusion. Calculation of the serum anion gap and the change from baseline enables the physician to detect organic acidoses, a common cause of severe metabolic acidosis, and aids therapeutic decisions. A fall in extracellular and intracellular pH can affect cellular function via different mechanisms and treatment should be directed at improving both parameters. In addition to supportive measures, treatment has included administration of base, primarily in the form of sodium bicarbonate. However, in clinical studies of lactic acidosis and ketoacidosis, bicarbonate administration has not reduced morbidity or mortality, or improved cellular function. Potential explanations for this failure include exacerbation of intracellular acidosis, reduction in ionized Ca(2+), and production of hyperosmolality. Administration of tris(hydroxymethyl)aminomethane (THAM) improves acidosis without producing intracellular acidosis and its value as a form of base is worth further investigation. Selective sodium-hydrogen exchanger 1 (NHE1) inhibitors have been shown to improve haemodynamics and reduce mortality in animal studies of acute lactic acidosis and should also be examined further. Given the important effects of acute metabolic acidosis on clinical outcomes, more intensive study of the pathogenesis of the associated cellular dysfunction and novel methods of treatment is indicated.

UI MeSH Term Description Entries
D001784 Blood Gas Analysis Measurement of oxygen and carbon dioxide in the blood. Analysis, Blood Gas,Analyses, Blood Gas,Blood Gas Analyses,Gas Analyses, Blood,Gas Analysis, Blood
D006439 Hemodynamics The movement and the forces involved in the movement of the blood through the CARDIOVASCULAR SYSTEM. Hemodynamic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000138 Acidosis A pathologic condition of acid accumulation or depletion of base in the body. The two main types are RESPIRATORY ACIDOSIS and metabolic acidosis, due to metabolic acid build up. Metabolic Acidosis,Acidoses,Acidoses, Metabolic,Acidosis, Metabolic,Metabolic Acidoses
D000208 Acute Disease Disease having a short and relatively severe course. Acute Diseases,Disease, Acute,Diseases, Acute
D016896 Treatment Outcome Evaluation undertaken to assess the results or consequences of management and procedures used in combating disease in order to determine the efficacy, effectiveness, safety, and practicability of these interventions in individual cases or series. Rehabilitation Outcome,Treatment Effectiveness,Clinical Effectiveness,Clinical Efficacy,Patient-Relevant Outcome,Treatment Efficacy,Effectiveness, Clinical,Effectiveness, Treatment,Efficacy, Clinical,Efficacy, Treatment,Outcome, Patient-Relevant,Outcome, Rehabilitation,Outcome, Treatment,Outcomes, Patient-Relevant,Patient Relevant Outcome,Patient-Relevant Outcomes
D017923 Sodium-Hydrogen Exchangers A family of plasma membrane exchange glycoprotein antiporters that transport sodium ions and protons across lipid bilayers. They have critical functions in intracellular pH regulation, cell volume regulation, and cellular response to many different hormones and mitogens. Na(+)-H(+)-Antiporter,Na(+)-H(+)-Exchanger,Sodium-Hydrogen Antiporter,Na(+)-H(+)-Antiporters,Na(+)-H(+)-Exchangers,SLC9 Na(+)-H(+) Exchangers,SLC9 Protein Family,SLC9 Proteins,SLC9-NHE Protein Family,Sodium-Hydrogen Antiporters,Sodium-Hydrogen Exchanger,Sodium-Proton Antiporter,Sodium-Proton Antiporters,Solute Carrier 9 Protein Family,Solute Carrier 9 Proteins,Antiporter, Sodium-Hydrogen,Antiporter, Sodium-Proton,Antiporters, Sodium-Hydrogen,Antiporters, Sodium-Proton,Exchanger, Sodium-Hydrogen,Exchangers, Sodium-Hydrogen,Protein Family, SLC9,Protein Family, SLC9-NHE,SLC9 NHE Protein Family,Sodium Hydrogen Antiporter,Sodium Hydrogen Antiporters,Sodium Hydrogen Exchanger,Sodium Hydrogen Exchangers,Sodium Proton Antiporter,Sodium Proton Antiporters

Related Publications

Jeffrey A Kraut, and Nicolaos E Madias
March 1983, Metabolism: clinical and experimental,
Jeffrey A Kraut, and Nicolaos E Madias
January 1992, Nephron,
Jeffrey A Kraut, and Nicolaos E Madias
January 1988, Hospital practice (Office ed.),
Jeffrey A Kraut, and Nicolaos E Madias
February 1997, Kidney international,
Jeffrey A Kraut, and Nicolaos E Madias
January 1971, Annali italiani di chirurgia,
Jeffrey A Kraut, and Nicolaos E Madias
January 2000, Transactions of the American Clinical and Climatological Association,
Jeffrey A Kraut, and Nicolaos E Madias
May 1966, Tidsskrift for den Norske laegeforening : tidsskrift for praktisk medicin, ny raekke,
Jeffrey A Kraut, and Nicolaos E Madias
February 2015, Clinical kidney journal,
Jeffrey A Kraut, and Nicolaos E Madias
January 1971, La Presse medicale,
Jeffrey A Kraut, and Nicolaos E Madias
March 1972, Therapeutique (La Semaine des hopitaux),
Copied contents to your clipboard!