Animal models of drug-resistant epilepsy. 2012

Heidrun Potschka
Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany.

Several animal models are discussed in order to outline features of difficult-to-treat or drug-resistant epilepsy. These models can be categorised as those which show a poor response to different antiepileptic drugs and those in which subgroups of drug-resistant animals are selected, based on interindividual differences. Non-responders to antiepileptic drugs have been described in the amygdala kindling model, as well as the chronic phase of post-status epilepticus models. Epileptic dogs which do not respond to standard antiepileptic drugs may serve as a translational model to provide a more clinical environment for drug testing. Drug resistance or a poor response to several antiepileptic drugs has been reported for the 6-Hz model, lamotrigine-pretreated kindled rats, pentylentetrazole-induced seizures in rats pre-exposed to pilocarpine, as well as following intrauterine exposure of rats to methylazoxymethanol. Using models to select non-responders is highly time-consuming and elaborate, limiting their use in routine drug-screening procedures. Current efforts to identify biomarkers of drug resistance may simplify the selection process, e.g. replacing several weeks of seizure monitoring by a single imaging scan. Moreover, further elucidation of mechanisms of resistance may help to design a series of ex vivo or in vitro screening procedures in order to evaluate whether a test compound is affected.

UI MeSH Term Description Entries
D007696 Kindling, Neurologic The repeated weak excitation of brain structures, that progressively increases sensitivity to the same stimulation. Over time, this can lower the threshold required to trigger seizures. Kindlings, Neurologic,Neurologic Kindling,Neurologic Kindlings
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D004351 Drug Resistance Diminished or failed response of an organism, disease or tissue to the intended effectiveness of a chemical or drug. It should be differentiated from DRUG TOLERANCE which is the progressive diminution of the susceptibility of a human or animal to the effects of a drug, as a result of continued administration. Resistance, Drug
D004827 Epilepsy A disorder characterized by recurrent episodes of paroxysmal brain dysfunction due to a sudden, disorderly, and excessive neuronal discharge. Epilepsy classification systems are generally based upon: (1) clinical features of the seizure episodes (e.g., motor seizure), (2) etiology (e.g., post-traumatic), (3) anatomic site of seizure origin (e.g., frontal lobe seizure), (4) tendency to spread to other structures in the brain, and (5) temporal patterns (e.g., nocturnal epilepsy). (From Adams et al., Principles of Neurology, 6th ed, p313) Aura,Awakening Epilepsy,Seizure Disorder,Epilepsy, Cryptogenic,Auras,Cryptogenic Epilepsies,Cryptogenic Epilepsy,Epilepsies,Epilepsies, Cryptogenic,Epilepsy, Awakening,Seizure Disorders
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000927 Anticonvulsants Drugs used to prevent SEIZURES or reduce their severity. Anticonvulsant,Anticonvulsant Drug,Anticonvulsive Agent,Anticonvulsive Drug,Antiepileptic,Antiepileptic Agent,Antiepileptic Agents,Antiepileptic Drug,Anticonvulsant Drugs,Anticonvulsive Agents,Anticonvulsive Drugs,Antiepileptic Drugs,Antiepileptics,Agent, Anticonvulsive,Agent, Antiepileptic,Agents, Anticonvulsive,Agents, Antiepileptic,Drug, Anticonvulsant,Drug, Anticonvulsive,Drug, Antiepileptic,Drugs, Anticonvulsant,Drugs, Anticonvulsive,Drugs, Antiepileptic
D013226 Status Epilepticus A prolonged seizure or seizures repeated frequently enough to prevent recovery between episodes occurring over a period of 20-30 minutes. The most common subtype is generalized tonic-clonic status epilepticus, a potentially fatal condition associated with neuronal injury and respiratory and metabolic dysfunction. Nonconvulsive forms include petit mal status and complex partial status, which may manifest as behavioral disturbances. Simple partial status epilepticus consists of persistent motor, sensory, or autonomic seizures that do not impair cognition (see also EPILEPSIA PARTIALIS CONTINUA). Subclinical status epilepticus generally refers to seizures occurring in an unresponsive or comatose individual in the absence of overt signs of seizure activity. (From N Engl J Med 1998 Apr 2;338(14):970-6; Neurologia 1997 Dec;12 Suppl 6:25-30) Absence Status,Complex Partial Status Epilepticus,Generalized Convulsive Status Epilepticus,Non-Convulsive Status Epilepticus,Petit Mal Status,Simple Partial Status Epilepticus,Grand Mal Status Epilepticus,Status Epilepticus, Complex Partial,Status Epilepticus, Electrographic,Status Epilepticus, Generalized,Status Epilepticus, Generalized Convulsive,Status Epilepticus, Grand Mal,Status Epilepticus, Non-Convulsive,Status Epilepticus, Simple Partial,Status Epilepticus, Subclinical,Electrographic Status Epilepticus,Generalized Status Epilepticus,Non Convulsive Status Epilepticus,Status Epilepticus, Non Convulsive,Status, Absence,Status, Petit Mal,Subclinical Status Epilepticus
D023421 Models, Animal Non-human animals, selected because of specific characteristics, for use in experimental research, teaching, or testing. Experimental Animal Models,Laboratory Animal Models,Animal Model,Animal Model, Experimental,Animal Model, Laboratory,Animal Models,Animal Models, Experimental,Animal Models, Laboratory,Experimental Animal Model,Laboratory Animal Model,Model, Animal,Model, Experimental Animal,Model, Laboratory Animal,Models, Experimental Animal,Models, Laboratory Animal

Related Publications

Heidrun Potschka
January 2002, Novartis Foundation symposium,
Heidrun Potschka
December 1999, Acta neurologica Belgica,
Heidrun Potschka
October 1997, Progress in neurobiology,
Heidrun Potschka
January 1993, Epilepsia,
Heidrun Potschka
January 2007, International review of neurobiology,
Heidrun Potschka
January 1998, Polish journal of pharmacology,
Heidrun Potschka
September 2011, The New England journal of medicine,
Heidrun Potschka
November 1998, Revista de neurologia,
Copied contents to your clipboard!