Auditory sensory gating in hippocampal neurons: a model system in the rat. 1990

P C Bickford-Wimer, and H Nagamoto, and R Johnson, and L E Adler, and M Egan, and G M Rose, and R Freedman
Denver Veterans Administration Hospital, CO 80220.

Diminished evoked response to repeated auditory stimuli, an example of sensory gating normally present in human subjects, is often absent in schizophrenics. To examine the mechanism of the normal response and to delineate possible sites of its abnormality in psychosis, it would be desirable to reproduce the phenomenon in laboratory animals. In this study, we show that the pattern of diminished response to the second of paired auditory stimuli is found in activity recorded from the CA3 region of the hippocampus of anesthetized rats. The evoked potential recorded from this area is predominantly an N40 wave, at identical latency to the prominent negative wave recorded from the skull surface of unanesthetized rats. Similar responses were not found in other areas, including the auditory neocortex and the medial geniculate nucleus. Amphetamine, which diminished sensory gating in both animals and humans, diminished the gating of the evoked potential recorded in the hippocampus. The effect of amphetamine was reversed by haloperidol. The rat hippocampus may therefore contain neurons that can be used to study the neurobiology of sensory gating.

UI MeSH Term Description Entries
D008297 Male Males
D008959 Models, Neurological Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Neurologic Models,Model, Neurological,Neurologic Model,Neurological Model,Neurological Models,Model, Neurologic,Models, Neurologic
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D005072 Evoked Potentials, Auditory The electric response evoked in the CEREBRAL CORTEX by ACOUSTIC STIMULATION or stimulation of the AUDITORY PATHWAYS. Auditory Evoked Potentials,Auditory Evoked Response,Auditory Evoked Potential,Auditory Evoked Responses,Evoked Potential, Auditory,Evoked Response, Auditory,Evoked Responses, Auditory,Potentials, Auditory Evoked
D006220 Haloperidol A phenyl-piperidinyl-butyrophenone that is used primarily to treat SCHIZOPHRENIA and other PSYCHOSES. It is also used in schizoaffective disorder, DELUSIONAL DISORDERS, ballism, and TOURETTE SYNDROME (a drug of choice) and occasionally as adjunctive therapy in INTELLECTUAL DISABILITY and the chorea of HUNTINGTON DISEASE. It is a potent antiemetic and is used in the treatment of intractable HICCUPS. (From AMA Drug Evaluations Annual, 1994, p279) Haldol
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000661 Amphetamine A powerful central nervous system stimulant and sympathomimetic. Amphetamine has multiple mechanisms of action including blocking uptake of adrenergics and dopamine, stimulation of release of monamines, and inhibiting monoamine oxidase. Amphetamine is also a drug of abuse and a psychotomimetic. The l- and the d,l-forms are included here. The l-form has less central nervous system activity but stronger cardiovascular effects. The d-form is DEXTROAMPHETAMINE. Desoxynorephedrin,Levoamphetamine,Phenopromin,l-Amphetamine,Amfetamine,Amphetamine Sulfate,Amphetamine Sulfate (2:1),Centramina,Fenamine,Mydrial,Phenamine,Thyramine,levo-Amphetamine,Sulfate, Amphetamine,l Amphetamine,levo Amphetamine

Related Publications

P C Bickford-Wimer, and H Nagamoto, and R Johnson, and L E Adler, and M Egan, and G M Rose, and R Freedman
January 2009, Neuropsychobiology,
P C Bickford-Wimer, and H Nagamoto, and R Johnson, and L E Adler, and M Egan, and G M Rose, and R Freedman
January 1991, Schizophrenia bulletin,
P C Bickford-Wimer, and H Nagamoto, and R Johnson, and L E Adler, and M Egan, and G M Rose, and R Freedman
October 1992, Neuropharmacology,
P C Bickford-Wimer, and H Nagamoto, and R Johnson, and L E Adler, and M Egan, and G M Rose, and R Freedman
April 1993, Brain research,
P C Bickford-Wimer, and H Nagamoto, and R Johnson, and L E Adler, and M Egan, and G M Rose, and R Freedman
March 2024, Journal of speech, language, and hearing research : JSLHR,
P C Bickford-Wimer, and H Nagamoto, and R Johnson, and L E Adler, and M Egan, and G M Rose, and R Freedman
February 2003, Biological psychiatry,
P C Bickford-Wimer, and H Nagamoto, and R Johnson, and L E Adler, and M Egan, and G M Rose, and R Freedman
October 2001, Physiology & behavior,
P C Bickford-Wimer, and H Nagamoto, and R Johnson, and L E Adler, and M Egan, and G M Rose, and R Freedman
May 1994, Schizophrenia research,
P C Bickford-Wimer, and H Nagamoto, and R Johnson, and L E Adler, and M Egan, and G M Rose, and R Freedman
June 2014, Behavioural brain research,
P C Bickford-Wimer, and H Nagamoto, and R Johnson, and L E Adler, and M Egan, and G M Rose, and R Freedman
February 2006, Neuropharmacology,
Copied contents to your clipboard!