Thyroid hormone regulates expression of a transfected human alpha-myosin heavy-chain fusion gene in fetal rat heart cells. 1990

R W Tsika, and J J Bahl, and L A Leinwand, and E Morkin
University Heart Center, University of Arizona College of Medicine, Tucson 85724.

The rat alpha-myosin heavy-chain (alpha-MHC) gene is regulated by 3,5,3'-triiodo-L-thyronine (T3) in ventricular myocardium and is constitutively expressed in atrial tissue. Less is known about regulation of the human gene, but conservation of sequences in the 5'-flanking region between the rat and human alpha-MHC genes suggests that the human gene may be regulated similarly. Accordingly, T3-responsiveness and tissue-specific expression of human and rat alpha-MHC/chloramphenicol acetyltransferase fusion constructs have been compared in rat fetal heart cells, L6E9 myoblasts and myotubes, 3T3 fibroblasts, and HeLa cells. Transient transfection assays revealed a complex series of cis-regulatory elements in the 5'-flanking sequences in the human genes, including a basal promoter element with canonical TATAA and CAAT sequences, two positive regulatory element(s), and two negative regulatory elements, which markedly diminished both constitutive and T3-inducible activity. Interestingly, the human gene seemed to contain a proximal thyroid-hormone response element(s) not found in the rat gene. In L6E9 myoblasts and myotubes, the human constructs were constitutively expressed but not T3-regulated; none of the constructs were active in 3T3 or HeLa cells. We propose that interactions among the thyroid hormone responsive elements and other cis-acting elements in the human alpha-MHC 5'-flanking sequences may be sufficient to explain the characteristic features of expression of this gene in cardiac tissues.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002872 Chromosome Deletion Actual loss of portion of a chromosome. Monosomy, Partial,Partial Monosomy,Deletion, Chromosome,Deletions, Chromosome,Monosomies, Partial,Partial Monosomies
D005333 Fetus The unborn young of a viviparous mammal, in the postembryonic period, after the major structures have been outlined. In humans, the unborn young from the end of the eighth week after CONCEPTION until BIRTH, as distinguished from the earlier EMBRYO, MAMMALIAN. Fetal Structures,Fetal Tissue,Fetuses,Mummified Fetus,Retained Fetus,Fetal Structure,Fetal Tissues,Fetus, Mummified,Fetus, Retained,Structure, Fetal,Structures, Fetal,Tissue, Fetal,Tissues, Fetal
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D006352 Heart Ventricles The lower right and left chambers of the heart. The right ventricle pumps venous BLOOD into the LUNGS and the left ventricle pumps oxygenated blood into the systemic arterial circulation. Cardiac Ventricle,Cardiac Ventricles,Heart Ventricle,Left Ventricle,Right Ventricle,Left Ventricles,Right Ventricles,Ventricle, Cardiac,Ventricle, Heart,Ventricle, Left,Ventricle, Right,Ventricles, Cardiac,Ventricles, Heart,Ventricles, Left,Ventricles, Right

Related Publications

R W Tsika, and J J Bahl, and L A Leinwand, and E Morkin
May 1987, Proceedings of the National Academy of Sciences of the United States of America,
R W Tsika, and J J Bahl, and L A Leinwand, and E Morkin
February 1991, Biochemical and biophysical research communications,
R W Tsika, and J J Bahl, and L A Leinwand, and E Morkin
September 1987, The Journal of biological chemistry,
R W Tsika, and J J Bahl, and L A Leinwand, and E Morkin
November 1997, The Journal of clinical investigation,
R W Tsika, and J J Bahl, and L A Leinwand, and E Morkin
September 1987, The Journal of biological chemistry,
R W Tsika, and J J Bahl, and L A Leinwand, and E Morkin
February 2011, Molecular and cellular biology,
R W Tsika, and J J Bahl, and L A Leinwand, and E Morkin
February 1994, The Journal of biological chemistry,
R W Tsika, and J J Bahl, and L A Leinwand, and E Morkin
March 1993, Endocrinology,
R W Tsika, and J J Bahl, and L A Leinwand, and E Morkin
September 1991, Biochemical and biophysical research communications,
R W Tsika, and J J Bahl, and L A Leinwand, and E Morkin
May 1992, The Journal of biological chemistry,
Copied contents to your clipboard!