Cytochrome P-450cam and putidaredoxin interaction during electron transfer. 1979

J A Peterson, and D M Mock

Cytochrome P-450cam, the bacterial hemeprotein which catalyzes the 5-exo-hydroxylation of d-camphor, requires two electrons to activate molecular oxygen for this monooxygenase reaction. These two electrons are transferred to cytochrome P-450cam in two one-electron steps by the physiological reductant, putidaredoxin. The present study of the kinetics of reduction of cytochrome P-450cam by reduced putidaredoxin has shown that the reaction obeys first order kinetics with a rate constant of 33 s-1 at 25 degrees C with respect to: 1) the appearance of the carbon monoxide complex of Fe(II) cytochrome P-450cam; 2) the disappearance of the 645 nm absorbance band of high-spin Fe(III) cytochrome P-450cam; and 3) the disappearance of the g = 1.94 EPR signal of reduced putidaredoxin. This data was interpreted as indicative of the rapid formation of a bimolecular complex between reduced putidaredoxin Fe(III) cytochrome P-450cam. The existence of the complex was first shown indirectly by kinetic analysis and secondly directly by electron paramagnetic resonance spectroscopic analysis of samples which were freeze-quenched approximately 16 ms after mixing. The direct evidence for complex formation was the loss of the EPR signal of Fe(III) cytochrome P-450cam upon formation of the complex while the EPR signal of reduced putidaredoxin decays with the same kinetics as the appearance of Fe(II) cytochrome P-450. The mechanism of the loss of the EPR signal of cytochrome P-450 upon formation of the complex is not apparent at this time but may involve a conformational change of cytochrome P-450cam following complex formation.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011549 Pseudomonas A genus of gram-negative, aerobic, rod-shaped bacteria widely distributed in nature. Some species are pathogenic for humans, animals, and plants. Chryseomonas,Pseudomona,Flavimonas
D002164 Camphor A bicyclic monoterpene ketone found widely in plants, especially CINNAMOMUM CAMPHORA. It is used topically as a skin antipruritic and as an anti-infective agent. Camphor, (+-)-Isomer,Camphor, (1R)-Isomer,Camphor, (1S)-Isomer
D002248 Carbon Monoxide Carbon monoxide (CO). A poisonous colorless, odorless, tasteless gas. It combines with hemoglobin to form carboxyhemoglobin, which has no oxygen carrying capacity. The resultant oxygen deprivation causes headache, dizziness, decreased pulse and respiratory rates, unconsciousness, and death. (From Merck Index, 11th ed) Monoxide, Carbon
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D004579 Electron Transport The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270) Respiratory Chain,Chain, Respiratory,Chains, Respiratory,Respiratory Chains,Transport, Electron
D005288 Ferredoxins Iron-containing proteins that transfer electrons, usually at a low potential, to flavoproteins; the iron is not present as in heme. (McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Ferredoxin,Ferredoxin I,Ferredoxin II,Ferredoxin III
D000693 Anaerobiosis The complete absence, or (loosely) the paucity, of gaseous or dissolved elemental oxygen in a given place or environment. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Anaerobic Metabolism,Anaerobic Metabolisms,Anaerobioses,Metabolism, Anaerobic,Metabolisms, Anaerobic

Related Publications

J A Peterson, and D M Mock
July 1981, The Journal of biological chemistry,
J A Peterson, and D M Mock
October 1974, Proceedings of the National Academy of Sciences of the United States of America,
J A Peterson, and D M Mock
July 1980, Biochemistry,
J A Peterson, and D M Mock
September 1970, Biochemical and biophysical research communications,
Copied contents to your clipboard!