Myo-inositol treatment and GABA-A receptor subunit changes after kainate-induced status epilepticus. 2013

Revaz Solomonia, and Nana Gogichaishvili, and Maia Nozadze, and Eka Lepsveridze, and David Dzneladze, and Tamar Kiguradze
Institute of Chemical Biology, Ilia State University, 3/5 K.Cholokashvili av., 0162, Tbilisi, Republic of Georgia. revaz_solomonia@iliauni.edu.ge

Identification of compounds preventing the biochemical changes that underlie the epileptogenesis process is of great importance. We have previously shown that myo-Inositol (MI) daily treatment prevents certain biochemical changes that are triggered by kainic acid (KA)-induced status epilepticus (SE). The aim of the current work was to study the further influence of MI treatment on the biochemical changes of epileptogenesis and focus on changes in the hippocampus and neocortex of rats for the following GABA-A receptor subunits: α1, α4, γ2, and δ. After SE, one group of rats was treated with saline, while the second group was treated with MI. Control groups that were not treated by the convulsant received either saline or MI administration. 28-30 h after the experiment, a decrease in the amount of the α1 subunit was revealed in the hippocampus and MI had no significant influence on it. On the 28th day of the experiment, the amount of α1 was increased in both the KA- and KA + MI-treated groups. The α4 and γ2 subunits were strongly reduced in the hippocampus of KA-treated animals, but MI significantly halted this reduction. The effects of MI on α4 and γ2 subunit changes were significantly different between hippocampus and neocortex. On the twenty-eighth day after SE, a decrease in the amount of α1 was found in the neocortex, but MI treatment had no effect on it. The obtained results indicate that MI treatment interferes with some of the biochemical processes of epileptogenesis.

UI MeSH Term Description Entries
D007294 Inositol An isomer of glucose that has traditionally been considered to be a B vitamin although it has an uncertain status as a vitamin and a deficiency syndrome has not been identified in man. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1379) Inositol phospholipids are important in signal transduction. Myoinositol,Chiro-Inositol,Mesoinositol,Chiro Inositol
D007608 Kainic Acid (2S-(2 alpha,3 beta,4 beta))-2-Carboxy-4-(1-methylethenyl)-3-pyrrolidineacetic acid. Ascaricide obtained from the red alga Digenea simplex. It is a potent excitatory amino acid agonist at some types of excitatory amino acid receptors and has been used to discriminate among receptor types. Like many excitatory amino acid agonists it can cause neurotoxicity and has been used experimentally for that purpose. Digenic Acid,Kainate,Acid, Digenic,Acid, Kainic
D008297 Male Males
D011963 Receptors, GABA-A Cell surface proteins which bind GAMMA-AMINOBUTYRIC ACID and contain an integral membrane chloride channel. Each receptor is assembled as a pentamer from a pool of at least 19 different possible subunits. The receptors belong to a superfamily that share a common CYSTEINE loop. Benzodiazepine-Gaba Receptors,GABA-A Receptors,Receptors, Benzodiazepine,Receptors, Benzodiazepine-GABA,Receptors, Diazepam,Receptors, GABA-Benzodiazepine,Receptors, Muscimol,Benzodiazepine Receptor,Benzodiazepine Receptors,Benzodiazepine-GABA Receptor,Diazepam Receptor,Diazepam Receptors,GABA(A) Receptor,GABA-A Receptor,GABA-A Receptor alpha Subunit,GABA-A Receptor beta Subunit,GABA-A Receptor delta Subunit,GABA-A Receptor epsilon Subunit,GABA-A Receptor gamma Subunit,GABA-A Receptor rho Subunit,GABA-Benzodiazepine Receptor,GABA-Benzodiazepine Receptors,Muscimol Receptor,Muscimol Receptors,delta Subunit, GABA-A Receptor,epsilon Subunit, GABA-A Receptor,gamma-Aminobutyric Acid Subtype A Receptors,Benzodiazepine GABA Receptor,Benzodiazepine Gaba Receptors,GABA A Receptor,GABA A Receptor alpha Subunit,GABA A Receptor beta Subunit,GABA A Receptor delta Subunit,GABA A Receptor epsilon Subunit,GABA A Receptor gamma Subunit,GABA A Receptor rho Subunit,GABA A Receptors,GABA Benzodiazepine Receptor,GABA Benzodiazepine Receptors,Receptor, Benzodiazepine,Receptor, Benzodiazepine-GABA,Receptor, Diazepam,Receptor, GABA-A,Receptor, GABA-Benzodiazepine,Receptor, Muscimol,Receptors, Benzodiazepine GABA,Receptors, GABA A,Receptors, GABA Benzodiazepine,delta Subunit, GABA A Receptor,epsilon Subunit, GABA A Receptor,gamma Aminobutyric Acid Subtype A Receptors
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013226 Status Epilepticus A prolonged seizure or seizures repeated frequently enough to prevent recovery between episodes occurring over a period of 20-30 minutes. The most common subtype is generalized tonic-clonic status epilepticus, a potentially fatal condition associated with neuronal injury and respiratory and metabolic dysfunction. Nonconvulsive forms include petit mal status and complex partial status, which may manifest as behavioral disturbances. Simple partial status epilepticus consists of persistent motor, sensory, or autonomic seizures that do not impair cognition (see also EPILEPSIA PARTIALIS CONTINUA). Subclinical status epilepticus generally refers to seizures occurring in an unresponsive or comatose individual in the absence of overt signs of seizure activity. (From N Engl J Med 1998 Apr 2;338(14):970-6; Neurologia 1997 Dec;12 Suppl 6:25-30) Absence Status,Complex Partial Status Epilepticus,Generalized Convulsive Status Epilepticus,Non-Convulsive Status Epilepticus,Petit Mal Status,Simple Partial Status Epilepticus,Grand Mal Status Epilepticus,Status Epilepticus, Complex Partial,Status Epilepticus, Electrographic,Status Epilepticus, Generalized,Status Epilepticus, Generalized Convulsive,Status Epilepticus, Grand Mal,Status Epilepticus, Non-Convulsive,Status Epilepticus, Simple Partial,Status Epilepticus, Subclinical,Electrographic Status Epilepticus,Generalized Status Epilepticus,Non Convulsive Status Epilepticus,Status Epilepticus, Non Convulsive,Status, Absence,Status, Petit Mal,Subclinical Status Epilepticus
D016896 Treatment Outcome Evaluation undertaken to assess the results or consequences of management and procedures used in combating disease in order to determine the efficacy, effectiveness, safety, and practicability of these interventions in individual cases or series. Rehabilitation Outcome,Treatment Effectiveness,Clinical Effectiveness,Clinical Efficacy,Patient-Relevant Outcome,Treatment Efficacy,Effectiveness, Clinical,Effectiveness, Treatment,Efficacy, Clinical,Efficacy, Treatment,Outcome, Patient-Relevant,Outcome, Rehabilitation,Outcome, Treatment,Outcomes, Patient-Relevant,Patient Relevant Outcome,Patient-Relevant Outcomes
D017208 Rats, Wistar A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain. Wistar Rat,Rat, Wistar,Wistar Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D021122 Protein Subunits Single chains of amino acids that are the units of multimeric PROTEINS. Multimeric proteins can be composed of identical or non-identical subunits. One or more monomeric subunits may compose a protomer which itself is a subunit structure of a larger assembly. Protomers,Protein Subunit,Protomer,Subunit, Protein,Subunits, Protein

Related Publications

Revaz Solomonia, and Nana Gogichaishvili, and Maia Nozadze, and Eka Lepsveridze, and David Dzneladze, and Tamar Kiguradze
January 2010, Neuroscience letters,
Revaz Solomonia, and Nana Gogichaishvili, and Maia Nozadze, and Eka Lepsveridze, and David Dzneladze, and Tamar Kiguradze
January 2005, Neuroscience,
Revaz Solomonia, and Nana Gogichaishvili, and Maia Nozadze, and Eka Lepsveridze, and David Dzneladze, and Tamar Kiguradze
August 2006, Journal of neurophysiology,
Revaz Solomonia, and Nana Gogichaishvili, and Maia Nozadze, and Eka Lepsveridze, and David Dzneladze, and Tamar Kiguradze
January 1997, Developmental neuroscience,
Revaz Solomonia, and Nana Gogichaishvili, and Maia Nozadze, and Eka Lepsveridze, and David Dzneladze, and Tamar Kiguradze
December 1998, Journal of neuroscience research,
Revaz Solomonia, and Nana Gogichaishvili, and Maia Nozadze, and Eka Lepsveridze, and David Dzneladze, and Tamar Kiguradze
October 2006, Epilepsia,
Revaz Solomonia, and Nana Gogichaishvili, and Maia Nozadze, and Eka Lepsveridze, and David Dzneladze, and Tamar Kiguradze
October 2013, Journal of neuropathology and experimental neurology,
Revaz Solomonia, and Nana Gogichaishvili, and Maia Nozadze, and Eka Lepsveridze, and David Dzneladze, and Tamar Kiguradze
February 2009, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Revaz Solomonia, and Nana Gogichaishvili, and Maia Nozadze, and Eka Lepsveridze, and David Dzneladze, and Tamar Kiguradze
March 2010, Epilepsia,
Revaz Solomonia, and Nana Gogichaishvili, and Maia Nozadze, and Eka Lepsveridze, and David Dzneladze, and Tamar Kiguradze
September 2009, Seizure,
Copied contents to your clipboard!