Oxidation of fatty alcohols to acids in the caecum of a gourami (Trichogaster cosby). 1979

K Thyagarajan, and D M Sand, and H L Brockman, and H Schlenk

Oxidation of fatty alcohols to acids in gourami caeca was investigated by measuring the reduction of NAD+ and the formation of labeled hexadecanoic acid from [1(-14)C]hexadecanol. Virtually all dehydrogenase activity is in the microsomal fraction. Maximal activity is obtained with NAD+ as cofactor whereas with NADP+ 60% of that activity is obtained. The enzyme is rather specific for long chain alcohols and 2 NADH are formed for each molecule of hexadecanol oxidized to acid. It is stabilized by mercaptoethanol, and completely inhibited by p-chloromercuribenzoate. The activity is optimal at pH 9.5. At higher pH, small amounts of aldehyde are found. The first reaction in the sequence, fatty alcohol leads to aldehyde leads to acid seems to occur under the more physiological condition at a much slower rate than the second reaction so that free aldehyde is not detected. Addition of palmitic acid indicated an uncompetitive product inhibition. The oxidation of alcohol to acid is reversible only to a very minor extent even in the presence of NADPH, CoA, ATP and Mg2+. Location, activity and properties of the enzyme are in agreement with the earlier observation from dietary experiments that in the gourami fatty alcohols of wax esters are oxidized to acids in the course of absorption.

UI MeSH Term Description Entries
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D002432 Cecum The blind sac or outpouching area of the LARGE INTESTINE that is below the entrance of the SMALL INTESTINE. It has a worm-like extension, the vermiform APPENDIX. Cecums
D005233 Fatty Alcohols Usually high-molecular-weight, straight-chain primary alcohols, but can also range from as few as 4 carbons, derived from natural fats and oils, including lauryl, stearyl, oleyl, and linoleyl alcohols. They are used in pharmaceuticals, cosmetics, detergents, plastics, and lube oils and in textile manufacture. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Fatty Alcohol,Alcohol, Fatty,Alcohols, Fatty
D005399 Fishes A group of cold-blooded, aquatic vertebrates having gills, fins, a cartilaginous or bony endoskeleton, and elongated bodies covered with scales.
D000429 Alcohol Oxidoreductases A subclass of enzymes which includes all dehydrogenases acting on primary and secondary alcohols as well as hemiacetals. They are further classified according to the acceptor which can be NAD+ or NADP+ (subclass 1.1.1), cytochrome (1.1.2), oxygen (1.1.3), quinone (1.1.5), or another acceptor (1.1.99). Carbonyl Reductase,Ketone Reductase,Carbonyl Reductases,Ketone Reductases,Oxidoreductases, Alcohol,Reductase, Carbonyl,Reductase, Ketone,Reductases, Carbonyl,Reductases, Ketone
D000441 Hexanols Isomeric forms and derivatives of hexanol (C6H11OH). Alcohols, Hexyl,Amylcarbinol,Hexanol,Hydroxyhexane,Amylcarbinols,Hydroxyhexanes,Hexyl Alcohols
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities

Related Publications

K Thyagarajan, and D M Sand, and H L Brockman, and H Schlenk
July 1981, Biochimica et biophysica acta,
K Thyagarajan, and D M Sand, and H L Brockman, and H Schlenk
January 1977, Comparative biochemistry and physiology. B, Comparative biochemistry,
K Thyagarajan, and D M Sand, and H L Brockman, and H Schlenk
October 1973, The Journal of nutrition,
K Thyagarajan, and D M Sand, and H L Brockman, and H Schlenk
April 1973, The Journal of nutrition,
K Thyagarajan, and D M Sand, and H L Brockman, and H Schlenk
November 1962, Journal of morphology,
K Thyagarajan, and D M Sand, and H L Brockman, and H Schlenk
January 2022, Toxicology reports,
K Thyagarajan, and D M Sand, and H L Brockman, and H Schlenk
September 1984, Kokubyo Gakkai zasshi. The Journal of the Stomatological Society, Japan,
K Thyagarajan, and D M Sand, and H L Brockman, and H Schlenk
April 1969, Blood,
K Thyagarajan, and D M Sand, and H L Brockman, and H Schlenk
August 2005, Journal of genetics,
K Thyagarajan, and D M Sand, and H L Brockman, and H Schlenk
December 2008, Journal of genetics,
Copied contents to your clipboard!