Interaction of cytochrome c with the phosphorprotein phosvitin. 1979

T Yoshimura, and A Matsushima, and K Aki

Candida krusei cytochrome c forms a molecular complex with phosphorprotein phosvitin in weakly alkaline solution of low ionic strength. At most, about 22 molecules of cytochrome c bind to a phosvitin molecule. The complex at the binding ratio below about 11 (half of the maximum ratio) as a much higher binding strength. Several lines of evidence indicate that the marked difference in the binding strength is due to the difference in negative charges on phosvitin molecule concerned in the binding of a cytochrome c molecule. The phosvitin-bound cytochrome c seems to have a preferred orientation with the front surface of the molecule containing the exposed heme edge in contact with the phosvitin molecule.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D010774 Phosvitin An egg yolk phosphoglycoprotein which contains about 90% of the yolk protein phosphorus. It is synthesized in the liver of the hen and transferred to the developing oocyte, where it is bound to lipoproteins within the yolk granules. Phosphovitellin
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002175 Candida A genus of yeast-like mitosporic Saccharomycetales fungi characterized by producing yeast cells, mycelia, pseudomycelia, and blastophores. It is commonly part of the normal flora of the skin, mouth, intestinal tract, and vagina, but can cause a variety of infections, including CANDIDIASIS; ONYCHOMYCOSIS; VULVOVAGINAL CANDIDIASIS; and CANDIDIASIS, ORAL (THRUSH). Candida guilliermondii var. nitratophila,Candida utilis,Cyberlindnera jadinii,Hansenula jadinii,Lindnera jadinii,Monilia,Pichia jadinii,Saccharomyces jadinii,Torula utilis,Torulopsis utilis,Monilias
D003574 Cytochrome c Group A group of cytochromes with covalent thioether linkages between either or both of the vinyl side chains of protoheme and the protein. (Enzyme Nomenclature, 1992, p539) Cytochromes Type c,Group, Cytochrome c,Type c, Cytochromes
D004527 Egg Proteins Proteins which are found in eggs (OVA) from any species. Egg Protein,Egg Shell Protein,Egg Shell Proteins,Egg White Protein,Egg White Proteins,Egg Yolk Protein,Egg Yolk Proteins,Ovum Protein,Ovum Proteins,Yolk Protein,Yolk Proteins,Protein, Egg,Protein, Egg Shell,Protein, Egg White,Protein, Egg Yolk,Protein, Ovum,Protein, Yolk,Proteins, Egg,Proteins, Egg Shell,Proteins, Egg White,Proteins, Egg Yolk,Proteins, Ovum,Proteins, Yolk,Shell Protein, Egg,Shell Proteins, Egg,White Protein, Egg,White Proteins, Egg,Yolk Protein, Egg,Yolk Proteins, Egg
D006736 Horses Large, hoofed mammals of the family EQUIDAE. Horses are active day and night with most of the day spent seeking and consuming food. Feeding peaks occur in the early morning and late afternoon, and there are several daily periods of rest. Equus caballus,Equus przewalskii,Horse, Domestic,Domestic Horse,Domestic Horses,Horse,Horses, Domestic

Related Publications

T Yoshimura, and A Matsushima, and K Aki
March 1974, Biochemistry,
T Yoshimura, and A Matsushima, and K Aki
January 1988, Progress in clinical and biological research,
T Yoshimura, and A Matsushima, and K Aki
July 1975, Archives of biochemistry and biophysics,
T Yoshimura, and A Matsushima, and K Aki
April 1999, Indian journal of biochemistry & biophysics,
T Yoshimura, and A Matsushima, and K Aki
June 1994, Journal of inorganic biochemistry,
T Yoshimura, and A Matsushima, and K Aki
June 1974, Archives of biochemistry and biophysics,
T Yoshimura, and A Matsushima, and K Aki
May 1981, The Journal of biological chemistry,
T Yoshimura, and A Matsushima, and K Aki
August 1988, European journal of biochemistry,
Copied contents to your clipboard!