Progressive multiple sclerosis: pathology and pathogenesis. 2012

Hans Lassmann, and Jack van Horssen, and Don Mahad
Centre for Brain Research, Medical University of Vienna, Wien, Austria. hans.lassmann@meduniwien.ac.at

Major progress has been made during the past three decades in understanding the inflammatory process and pathogenetic mechanisms in multiple sclerosis (MS). Consequently, effective anti-inflammatory and immunomodulatory treatments are now available for patients in the relapsing-remitting stage of the disease. This Review summarizes studies on the pathology of progressive MS and discusses new data on the mechanisms underlying its pathogenesis. In progressive MS, as in relapsing-remitting MS, active tissue injury is associated with inflammation, but the inflammatory response in the progressive phase occurs at least partly behind the blood-brain barrier, which makes it more difficult to treat. The other mechanisms that drive disease in patients with primary or secondary progressive MS are currently unresolved, although oxidative stress resulting in mitochondrial injury might participate in the induction of demyelination and neurodegeneration in both the relapsing-remitting and progressive stages of MS. Oxidative stress seems to be mainly driven by inflammation and oxidative burst in microglia; however, its effects might be amplified in patients with progressive MS by age-dependent iron accumulation in the brain and by mitochondrial gene deletions, triggered by the chronic inflammatory process.

UI MeSH Term Description Entries
D007155 Immunologic Factors Biologically active substances whose activities affect or play a role in the functioning of the immune system. Biological Response Modifier,Biomodulator,Immune Factor,Immunological Factor,Immunomodulator,Immunomodulators,Biological Response Modifiers,Biomodulators,Factors, Immunologic,Immune Factors,Immunological Factors,Modifiers, Biological Response,Response Modifiers, Biological,Factor, Immune,Factor, Immunological,Factors, Immune,Factors, Immunological,Modifier, Biological Response,Response Modifier, Biological
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D018384 Oxidative Stress A disturbance in the prooxidant-antioxidant balance in favor of the former, leading to potential damage. Indicators of oxidative stress include damaged DNA bases, protein oxidation products, and lipid peroxidation products (Sies, Oxidative Stress, 1991, pxv-xvi). Anti-oxidative Stress,Antioxidative Stress,DNA Oxidative Damage,Nitro-Oxidative Stress,Oxidative Cleavage,Oxidative DNA Damage,Oxidative Damage,Oxidative Injury,Oxidative Nitrative Stress,Oxidative Stress Injury,Oxidative and Nitrosative Stress,Stress, Oxidative,Anti oxidative Stress,Anti-oxidative Stresses,Antioxidative Stresses,Cleavage, Oxidative,DNA Damage, Oxidative,DNA Oxidative Damages,Damage, DNA Oxidative,Damage, Oxidative,Damage, Oxidative DNA,Injury, Oxidative,Injury, Oxidative Stress,Nitrative Stress, Oxidative,Nitro Oxidative Stress,Nitro-Oxidative Stresses,Oxidative Cleavages,Oxidative DNA Damages,Oxidative Damage, DNA,Oxidative Damages,Oxidative Injuries,Oxidative Nitrative Stresses,Oxidative Stress Injuries,Oxidative Stresses,Stress Injury, Oxidative,Stress, Anti-oxidative,Stress, Antioxidative,Stress, Nitro-Oxidative,Stress, Oxidative Nitrative,Stresses, Nitro-Oxidative
D018450 Disease Progression The worsening and general progression of a disease over time. This concept is most often used for chronic and incurable diseases where the stage of the disease is an important determinant of therapy and prognosis. Clinical Course,Clinical Progression,Disease Exacerbation,Exacerbation, Disease,Progression, Clinical,Progression, Disease
D020528 Multiple Sclerosis, Chronic Progressive A form of multiple sclerosis characterized by a progressive deterioration in neurologic function which is in contrast to the more typical relapsing remitting form. If the clinical course is free of distinct remissions, it is referred to as primary progressive multiple sclerosis. When the progressive decline is punctuated by acute exacerbations, it is referred to as progressive relapsing multiple sclerosis. The term secondary progressive multiple sclerosis is used when relapsing remitting multiple sclerosis evolves into the chronic progressive form. (From Ann Neurol 1994;36 Suppl:S73-S79; Adams et al., Principles of Neurology, 6th ed, pp903-914) Chronic Progressive Multiple Sclerosis,Multiple Sclerosis, Progressive Relapsing,Multiple Sclerosis, Remittent Progressive,Multiple Sclerosis, Primary Progressive,Multiple Sclerosis, Secondary Progressive,Primary Progressive Multiple Sclerosis,Progressive Relapsing Multiple Sclerosis,Remittent Progressive Multiple Sclerosis,Secondary Progressive Multiple Sclerosis

Related Publications

Hans Lassmann, and Jack van Horssen, and Don Mahad
June 1989, Lancet (London, England),
Hans Lassmann, and Jack van Horssen, and Don Mahad
April 2002, Multiple sclerosis (Houndmills, Basingstoke, England),
Hans Lassmann, and Jack van Horssen, and Don Mahad
June 2004, Multiple sclerosis (Houndmills, Basingstoke, England),
Hans Lassmann, and Jack van Horssen, and Don Mahad
January 2011, The Mount Sinai journal of medicine, New York,
Hans Lassmann, and Jack van Horssen, and Don Mahad
June 2014, Current opinion in neurology,
Hans Lassmann, and Jack van Horssen, and Don Mahad
September 2010, Current neuropharmacology,
Hans Lassmann, and Jack van Horssen, and Don Mahad
May 2023, Brain : a journal of neurology,
Hans Lassmann, and Jack van Horssen, and Don Mahad
September 2020, Annals of neurology,
Hans Lassmann, and Jack van Horssen, and Don Mahad
June 2016, Continuum (Minneapolis, Minn.),
Hans Lassmann, and Jack van Horssen, and Don Mahad
June 2015, Current opinion in neurology,
Copied contents to your clipboard!