Biosynthesis of phospholipids in Bacillus megaterium. 1979

K E Langley, and M P Yaffe, and E P Kennedy

Information on the biosynthesis of phospholipids in bacteria has been derived principally from the study of Escherichia coli and other gram-negative organisms. We have now carried out a detailed study of the pathways of phospholipid biosynthesis in the gram-positive organism Bacillus megarterium KM in relation to investigations on the biogenesis of lipid asymmetry in membranes. Radioactive precursors such as 32Pi and [3H]palmitate initially label phosphatidylethanolamine much more than phosphatidylglycerol. This raised the possibility that phosphatidylglycerol may be the precursor of phosphatidylethanolamine in a pathway different from that in E. coli. Phosphatidylglycerol is known to be highly reactive metabolically, since it functions as a donor of phosphatidyl residues in the synthesis of cardiolipin and as a donor of glycerophosphate residues in the synthesis of teichoic acids and of membrane-derived oligosaccharides. The large pool of phosphatidylglycerol would dilute the radioactive isotope, slowing the initial rate of incorporation of label into phosphatidylethanolamine. However, assays of cell-free extracts revealed no evidence for such a novel pathway. Instead, phosphatidylserine synthase (cytidine 5'-diphosphate-diglyceride:L-serine phosphatidyl transferase) and phosphatidylserine decarboxylase were detected, although at low levels. These results suggest that the pathway in B. megaterium is the same as that in E. coli in which phosphatidylserine, derived from cytidine 5'-diphosphate-diglyceride, is the precursor of phosphatidylethanolamine. The lag in the appearance of label in phosphatidylethanolamine appears to be the effect of a considerable pool of phosphatidylserine (ca. 5 to 10% of the total phospholipid) in certain strains of B. megaterium. The lag in labeling can be correlated with the size of the pool of phosphatidylserine. Pulse-chase experiments in vivo support the conclusion that in B. megaterium phosphatidylserine is not derived from phosphatidylglycerol. Rates of turnover of the membrane phospholipids of B. megaterium have also been studied.

UI MeSH Term Description Entries
D010714 Phosphatidylethanolamines Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to an ethanolamine moiety. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid and ethanolamine and 2 moles of fatty acids. Cephalin,Cephalins,Ethanolamine Phosphoglyceride,Ethanolamine Phosphoglycerides,Ethanolamineglycerophospholipids,Phosphoglyceride, Ethanolamine,Phosphoglycerides, Ethanolamine
D010715 Phosphatidylglycerols A nitrogen-free class of lipids present in animal and particularly plant tissues and composed of one mole of glycerol and 1 or 2 moles of phosphatidic acid. Members of this group differ from one another in the nature of the fatty acids released on hydrolysis. Glycerol Phosphoglycerides,Monophosphatidylglycerols,Phosphatidylglycerol,Phosphatidyl Glycerol,Glycerol, Phosphatidyl,Phosphoglycerides, Glycerol
D010717 CDPdiacylglycerol-Serine O-Phosphatidyltransferase An enzyme that catalyzes the formation of phosphatidylserine and CMP from CDPdiglyceride plus serine. EC 2.7.8.8. CDP Diacylglycerol-Serine O-Phosphatidyltransferase,CDP Diglyceride Serine O-Phosphatidyltransferase,CDP-DG Synthase,Phosphatidylserine Synthase,Phosphatidylserine Synthetase,CDP DG Synthase,CDP Diacylglycerol Serine O Phosphatidyltransferase,CDP Diglyceride Serine O Phosphatidyltransferase,CDPdiacylglycerol Serine O Phosphatidyltransferase,Diacylglycerol-Serine O-Phosphatidyltransferase, CDP,O-Phosphatidyltransferase, CDP Diacylglycerol-Serine,O-Phosphatidyltransferase, CDPdiacylglycerol-Serine,Synthase, CDP-DG,Synthase, Phosphatidylserine,Synthetase, Phosphatidylserine
D010718 Phosphatidylserines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a SERINE moiety. Serine Phosphoglycerides,Phosphatidyl Serine,Phosphatidyl Serines,Phosphatidylserine,Phosphoglycerides, Serine,Serine, Phosphatidyl,Serines, Phosphatidyl
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D002262 Carboxy-Lyases Enzymes that catalyze the addition of a carboxyl group to a compound (carboxylases) or the removal of a carboxyl group from a compound (decarboxylases). EC 4.1.1. Carboxy-Lyase,Decarboxylase,Decarboxylases,Carboxy Lyase,Carboxy Lyases
D002308 Cardiolipins Acidic phospholipids composed of two molecules of phosphatidic acid covalently linked to a molecule of glycerol. They occur primarily in mitochondrial inner membranes and in bacterial plasma membranes. They are the main antigenic components of the Wassermann-type antigen that is used in nontreponemal SYPHILIS SERODIAGNOSIS. Cardiolipin,Diphosphatidylglycerol,Diphosphatidylglycerols
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006898 Hydroxylamines Organic compounds that contain the (-NH2OH) radical.
D001410 Bacillus megaterium A species of bacteria whose spores vary from round to elongate. It is a common soil saprophyte. Bacillus megatherium

Related Publications

K E Langley, and M P Yaffe, and E P Kennedy
October 1965, Biochimica et biophysica acta,
K E Langley, and M P Yaffe, and E P Kennedy
August 1958, Journal of bacteriology,
K E Langley, and M P Yaffe, and E P Kennedy
April 1979, European journal of biochemistry,
K E Langley, and M P Yaffe, and E P Kennedy
March 1977, Journal of molecular biology,
K E Langley, and M P Yaffe, and E P Kennedy
October 1966, The Journal of biological chemistry,
K E Langley, and M P Yaffe, and E P Kennedy
April 1997, Biochemistry,
K E Langley, and M P Yaffe, and E P Kennedy
November 1976, Proceedings of the National Academy of Sciences of the United States of America,
K E Langley, and M P Yaffe, and E P Kennedy
February 1984, Journal of bacteriology,
K E Langley, and M P Yaffe, and E P Kennedy
September 1967, The Journal of biological chemistry,
K E Langley, and M P Yaffe, and E P Kennedy
June 1990, FEMS microbiology letters,
Copied contents to your clipboard!