Effects of cytoskeletal perturbant drugs on ecto 5'-nucleotidase, a concanavalin A receptor. 1979

K L Carraway, and R C Doss, and J W Huggins, and R W Chesnut, and C A Carraway

Differences in cell morphology, concanavalin A-induced receptor redistributions, and the cooperativity of the inhibition of 5'-nucleotidase (AMPase) by concanavalin A (Con A) have been investigated in ascites sublines of the 13762 rat mammary adenocarcinoma cells treated with microfilament- and microtubule-perturbing drugs. By scanning electron microscopy MAT-C1 cells exhibit a highly irregular surface, covered with microvilli extending as branched structures from the cell body. MAT-A, MAT-B, and MAT-B1 cells have a more normal appearance, with unbranched microvilli, ruffles, ridges, and blebs associated closely with the cell body. MAT-C cells have an intermediate morphology. Treatment of MAT-A, MAT-B, or MAT-B1 cells with Con A causes rapid redistribution of Con A receptors. Both cytochalasins and colchicine cause alternations in the receptor redistributions. Receptors on MAT-C1 cells are highly resistant to redistribution, even in the presence of cytoskeletal perturbant drugs. The cooperativity of the inhibition of AMPase by Con A was investigated in MAT-A and MAT-C1 cells. Untreated cells exhibit no cooperativity. If either subline is treated with colchicine, cytochalasin B or D, or dibucaine, cooperativity is observed. Lumicolchicine has no effect. Theophylline or dibutyryl cyclic AMP prevents the effects of either colchicine or cytochalasin. The concentration required for half-maximal induction of cooperativity is 0.3--0.4 microM for both colchicine and cytochalasin D, which is in the appropriate range for specific microtubule and microfilament disruptions. The effectiveness of the cytochalasins (E greater than D greater than B) is consistent with their known effects on microfilaments. No direct correlation was observed between the induction of cooperativity and drug-induced changes in Con A receptor redistribution or cell morphology. The morphology of MAT-A cells is grossly altered by cytochalasins or dibucaine and somewhat less by colchicine. MAT-C1 cells exhibit more minor alterations in morphology as a result of these drug treatments. The results of this study indicate that the inhibition of AMPase, which is a Con A receptor, is a different process from the redistribution of the bulk of the Con A receptors, possibly short range membrane interactions rather than global effects on the cell.

UI MeSH Term Description Entries
D008325 Mammary Neoplasms, Experimental Experimentally induced mammary neoplasms in animals to provide a model for studying human BREAST NEOPLASMS. Experimental Mammary Neoplasms,Neoplasms, Experimental Mammary,Experimental Mammary Neoplasm,Mammary Neoplasm, Experimental,Neoplasm, Experimental Mammary
D009708 Nucleotidases A class of enzymes that catalyze the conversion of a nucleotide and water to a nucleoside and orthophosphate. EC 3.1.3.-.
D011952 Receptors, Concanavalin A Glycoprotein moieties on the surfaces of cell membranes that bind concanavalin A selectively; the number and location of the sites depends on the type and condition of the cell. Concanavalin A Binding Sites,Concanavalin A Receptors,Concanavalin A Receptor,Receptor, Concanavalin A
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D003078 Colchicine A major alkaloid from Colchicum autumnale L. and found also in other Colchicum species. Its primary therapeutic use is in the treatment of gout, but it has been used also in the therapy of familial Mediterranean fever (PERIODIC DISEASE). Colchicine, (+-)-Isomer,Colchicine, (R)-Isomer
D003572 Cytochalasins 11- to 14-membered macrocyclic lactones with a fused isoindolone. Members with INDOLES attached at the C10 position are called chaetoglobosins. They are produced by various fungi. Some members interact with ACTIN and inhibit CYTOKINESIS.
D003992 Dibucaine A local anesthetic of the amide type now generally used for surface anesthesia. It is one of the most potent and toxic of the long-acting local anesthetics and its parenteral use is restricted to spinal anesthesia. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1006) Cincain,Cinchocaine,Nupercainal,Nupercaine,Sovcaine
D003994 Bucladesine A cyclic nucleotide derivative that mimics the action of endogenous CYCLIC AMP and is capable of permeating the cell membrane. It has vasodilator properties and is used as a cardiac stimulant. (From Merck Index, 11th ed) Dibutyryl Adenosine-3',5'-Monophosphate,Dibutyryl Cyclic AMP,(But)(2) cAMP,Bucladesine, Barium (1:1) Salt,Bucladesine, Disodium Salt,Bucladesine, Monosodium Salt,Bucladesine, Sodium Salt,DBcAMP,Dibutyryl Adenosine 3,5 Monophosphate,N',O'-Dibutyryl-cAMP,N(6),0(2')-Dibutyryl Cyclic AMP,AMP, Dibutyryl Cyclic,Adenosine-3',5'-Monophosphate, Dibutyryl,Cyclic AMP, Dibutyryl,Dibutyryl Adenosine 3',5' Monophosphate,Disodium Salt Bucladesine,Monosodium Salt Bucladesine,N',O' Dibutyryl cAMP,Sodium Salt Bucladesine

Related Publications

K L Carraway, and R C Doss, and J W Huggins, and R W Chesnut, and C A Carraway
September 1975, The Journal of biological chemistry,
K L Carraway, and R C Doss, and J W Huggins, and R W Chesnut, and C A Carraway
November 1983, Acta virologica,
K L Carraway, and R C Doss, and J W Huggins, and R W Chesnut, and C A Carraway
January 1998, Ryoikibetsu shokogun shirizu,
K L Carraway, and R C Doss, and J W Huggins, and R W Chesnut, and C A Carraway
March 1974, Science (New York, N.Y.),
K L Carraway, and R C Doss, and J W Huggins, and R W Chesnut, and C A Carraway
January 1984, Advances in experimental medicine and biology,
K L Carraway, and R C Doss, and J W Huggins, and R W Chesnut, and C A Carraway
June 2006, Purinergic signalling,
K L Carraway, and R C Doss, and J W Huggins, and R W Chesnut, and C A Carraway
December 1974, Biochimica et biophysica acta,
K L Carraway, and R C Doss, and J W Huggins, and R W Chesnut, and C A Carraway
September 2002, Nephron,
K L Carraway, and R C Doss, and J W Huggins, and R W Chesnut, and C A Carraway
April 1992, Scandinavian journal of immunology,
K L Carraway, and R C Doss, and J W Huggins, and R W Chesnut, and C A Carraway
March 1992, Journal of molecular and cellular cardiology,
Copied contents to your clipboard!