Differential regulation of actin and myosin isoenzyme synthesis in functionally overloaded skeletal muscle. 1990

P Gregory, and J Gagnon, and D A Essig, and S K Reid, and G Prior, and R Zak
Department of Medicine, University of Chicago, IL 60637.

Overload hypertrophy of the chicken anterior latissimus dorsi muscle is accompanied by a replacement of one myosin isoenzyme (slow myosin-1, SM1) by another (slow myosin-2, SM2). To investigate the molecular mechanisms by which these changes occur, we measured the fractional synthesis rates (ks) in vivo of individual myosin-heavy-chain isoenzymes, total actin and total protein during the first 72 h of muscle growth. Although the ks of total protein and actin were doubled at 24 h, the ks for SM1 and SM2 were depressed. However, the ks of both isomyosins were nearly tripled by 72 h. Despite the increase in muscle size observed at 72 h, the amount of SM1 was reduced by half, indicating increased degradation of SM1. Results of translation of polyribosomes in vitro paralleled the results obtained in vivo. The proportion of total polyadenylylated mRNA in total RNA was increased at 48 and 72 h, but unchanged at 24 h despite the increase in protein synthesis at 24 h. Nuclease-protection analyses indicate that the level of specific SM1 and SM2 mRNAs change in a reciprocal fashion during overload. We conclude that gene-specific and temporal differences exist in the regulatory mechanisms that control overload-induced muscle growth.

UI MeSH Term Description Entries
D006984 Hypertrophy General increase in bulk of a part or organ due to CELL ENLARGEMENT and accumulation of FLUIDS AND SECRETIONS, not due to tumor formation, nor to an increase in the number of cells (HYPERPLASIA). Hypertrophies
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

P Gregory, and J Gagnon, and D A Essig, and S K Reid, and G Prior, and R Zak
September 1986, Circulation,
P Gregory, and J Gagnon, and D A Essig, and S K Reid, and G Prior, and R Zak
September 1979, The Biochemical journal,
P Gregory, and J Gagnon, and D A Essig, and S K Reid, and G Prior, and R Zak
October 1990, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
P Gregory, and J Gagnon, and D A Essig, and S K Reid, and G Prior, and R Zak
July 1983, Journal of molecular biology,
P Gregory, and J Gagnon, and D A Essig, and S K Reid, and G Prior, and R Zak
August 1990, The American journal of physiology,
P Gregory, and J Gagnon, and D A Essig, and S K Reid, and G Prior, and R Zak
May 1980, European journal of biochemistry,
P Gregory, and J Gagnon, and D A Essig, and S K Reid, and G Prior, and R Zak
January 2002, Biochimica et biophysica acta,
P Gregory, and J Gagnon, and D A Essig, and S K Reid, and G Prior, and R Zak
June 2005, American journal of physiology. Regulatory, integrative and comparative physiology,
P Gregory, and J Gagnon, and D A Essig, and S K Reid, and G Prior, and R Zak
August 1987, Biokhimiia (Moscow, Russia),
P Gregory, and J Gagnon, and D A Essig, and S K Reid, and G Prior, and R Zak
January 1982, Advances in experimental medicine and biology,
Copied contents to your clipboard!