Acrolein cytotoxicity in hepatocytes involves endoplasmic reticulum stress, mitochondrial dysfunction and oxidative stress. 2012

Mohammad K Mohammad, and Diana Avila, and Jingwen Zhang, and Shirish Barve, and Gavin Arteel, and Craig McClain, and Swati Joshi-Barve
Department of Medicine, University of Louisville, USA; Alcohol Research Center, University of Louisville, USA.

Acrolein is a common environmental, food and water pollutant and a major component of cigarette smoke. Also, it is produced endogenously via lipid peroxidation and cellular metabolism of certain amino acids and drugs. Acrolein is cytotoxic to many cell types including hepatocytes; however the mechanisms are not fully understood. We examined the molecular mechanisms underlying acrolein hepatotoxicity in primary human hepatocytes and hepatoma cells. Acrolein, at pathophysiological concentrations, caused a dose-dependent loss of viability of hepatocytes. The death was apoptotic at moderate and necrotic at high concentrations of acrolein. Acrolein exposure rapidly and dramatically decreased intracellular glutathione and overall antioxidant capacity, and activated the stress-signaling MAP-kinases JNK, p42/44 and p38. Our data demonstrate for the first time in human hepatocytes, that acrolein triggered endoplasmic reticulum (ER) stress and activated eIF2α, ATF-3 and -4, and Gadd153/CHOP, resulting in cell death. Notably, the protective/adaptive component of ER stress was not activated, and acrolein failed to up-regulate the protective ER-chaperones, GRP78 and GRP94. Additionally, exposure to acrolein disrupted mitochondrial integrity/function, and led to the release of pro-apoptotic proteins and ATP depletion. Acrolein-induced cell death was attenuated by N-acetyl cysteine, phenyl-butyric acid, and caspase and JNK inhibitors. Our data demonstrate that exposure to acrolein induces a variety of stress responses in hepatocytes, including GSH depletion, oxidative stress, mitochondrial dysfunction and ER stress (without ER-protective responses) which together contribute to acrolein toxicity. Our study defines basic mechanisms underlying liver injury caused by reactive aldehyde pollutants such as acrolein.

UI MeSH Term Description Entries
D007202 Indicators and Reagents Substances used for the detection, identification, analysis, etc. of chemical, biological, or pathologic processes or conditions. Indicators are substances that change in physical appearance, e.g., color, at or approaching the endpoint of a chemical titration, e.g., on the passage between acidity and alkalinity. Reagents are substances used for the detection or determination of another substance by chemical or microscopical means, especially analysis. Types of reagents are precipitants, solvents, oxidizers, reducers, fluxes, and colorimetric reagents. (From Grant & Hackh's Chemical Dictionary, 5th ed, p301, p499) Indicator,Reagent,Reagents,Indicators,Reagents and Indicators
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D010539 Permeability Property of membranes and other structures to permit passage of light, heat, gases, liquids, metabolites, and mineral ions. Permeabilities
D010770 Phosphotransferases A rather large group of enzymes comprising not only those transferring phosphate but also diphosphate, nucleotidyl residues, and others. These have also been subdivided according to the acceptor group. (From Enzyme Nomenclature, 1992) EC 2.7. Kinases,Phosphotransferase,Phosphotransferases, ATP,Transphosphorylase,Transphosphorylases,Kinase,ATP Phosphotransferases
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000091342 Endoplasmic Reticulum Chaperone BiP An ENDOPLASMIC RETICULUM specific chaperone of the HSP70 family. They are involved in folding and oligomerization of secreted and membrane proteins and ENDOPLASMIC RETICULUM STRESS related UNFOLDED PROTEIN RESPONSE. Binding-immunoglobulin Protein Molecular Chaperone,Glucose Regulated Protein 78 kDa,Grp78,HSPA5 Protein,Heat-Shock Protein 5,Molecular Chaperone BiP,Molecular Chaperone GRP78,BiP, Molecular Chaperone,Binding immunoglobulin Protein Molecular Chaperone,GRP78, Molecular Chaperone,Heat Shock Protein 5,Protein, HSPA5
D000171 Acrolein Unsaturated three-carbon aldehyde. 2-Propenal,Acraldehyde,Acrylaldehyde,Acrylic Aldehyde,Allyl Aldehyde,Aqualin,Ethylene Aldehyde,2 Propenal,Aldehyde, Acrylic,Aldehyde, Allyl,Aldehyde, Ethylene
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000975 Antioxidants Naturally occurring or synthetic substances that inhibit or retard oxidation reactions. They counteract the damaging effects of oxidation in animal tissues. Anti-Oxidant,Antioxidant,Antioxidant Activity,Endogenous Antioxidant,Endogenous Antioxidants,Anti-Oxidant Effect,Anti-Oxidant Effects,Anti-Oxidants,Antioxidant Effect,Antioxidant Effects,Activity, Antioxidant,Anti Oxidant,Anti Oxidant Effect,Anti Oxidant Effects,Anti Oxidants,Antioxidant, Endogenous,Antioxidants, Endogenous

Related Publications

Mohammad K Mohammad, and Diana Avila, and Jingwen Zhang, and Shirish Barve, and Gavin Arteel, and Craig McClain, and Swati Joshi-Barve
January 2014, International journal of toxicology,
Mohammad K Mohammad, and Diana Avila, and Jingwen Zhang, and Shirish Barve, and Gavin Arteel, and Craig McClain, and Swati Joshi-Barve
December 2016, Advanced pharmaceutical bulletin,
Mohammad K Mohammad, and Diana Avila, and Jingwen Zhang, and Shirish Barve, and Gavin Arteel, and Craig McClain, and Swati Joshi-Barve
February 2018, Free radical biology & medicine,
Mohammad K Mohammad, and Diana Avila, and Jingwen Zhang, and Shirish Barve, and Gavin Arteel, and Craig McClain, and Swati Joshi-Barve
April 2011, Journal of neuropathology and experimental neurology,
Mohammad K Mohammad, and Diana Avila, and Jingwen Zhang, and Shirish Barve, and Gavin Arteel, and Craig McClain, and Swati Joshi-Barve
January 2016, Current pharmaceutical design,
Mohammad K Mohammad, and Diana Avila, and Jingwen Zhang, and Shirish Barve, and Gavin Arteel, and Craig McClain, and Swati Joshi-Barve
January 2018, Hepatology research : the official journal of the Japan Society of Hepatology,
Mohammad K Mohammad, and Diana Avila, and Jingwen Zhang, and Shirish Barve, and Gavin Arteel, and Craig McClain, and Swati Joshi-Barve
March 2009, Journal of proteome research,
Mohammad K Mohammad, and Diana Avila, and Jingwen Zhang, and Shirish Barve, and Gavin Arteel, and Craig McClain, and Swati Joshi-Barve
June 2005, Archives of toxicology,
Mohammad K Mohammad, and Diana Avila, and Jingwen Zhang, and Shirish Barve, and Gavin Arteel, and Craig McClain, and Swati Joshi-Barve
January 2022, BioMed research international,
Mohammad K Mohammad, and Diana Avila, and Jingwen Zhang, and Shirish Barve, and Gavin Arteel, and Craig McClain, and Swati Joshi-Barve
November 2020, Biochimica et biophysica acta. Molecular basis of disease,
Copied contents to your clipboard!