Characterization of oxidative and reductive metabolism in vitro of nitrofluoranthenes by rat liver enzymes. 1990

M A Belisario, and R Pecce, and R Della Morte, and A R Arena, and A Cecinato, and P Ciccioli, and N Staiano
Dipartimento di Biochimica e Biotecnologie Mediche, Università di Napoli, Italy.

Nitrofluoranthenes (NFs) are mutagenic and carcinogenic environmental pollutants found in incomplete combustion products and urban air particulate. We have studied both oxidative and reductive metabolism in vitro of different NF isomers mediated by subcellular rat liver fractions. Under aerobic conditions only ring hydroxylation of NFs by rat liver microsomes occurred and the isomeric position of the nitro group affected both the amount and the type of phenolic metabolites formed. Liver microsomes from 3-methylcholanthrene-induced rats were most effective in giving ring hydroxylated 7- and 8-nitrofluoranthene, whereas liver microsomes from phenobarbital-pretreated rats were the most active in metabolizing 1- and 3-nitrofluoranthene. Under anaerobic conditions, only reduction of NFs mediated by both cytosolic and microsomal rat liver enzymes occurred. Cofactor requirements and inhibition experiments indicated that the reductase activity in rat liver cytosolic fractions could be ascribed to DT-diaphorase, aldehyde oxidase and/or other unknown enzymes. The microsomal reductase activity was inhibited by oxygen, carbon monoxide, 2-diethylaminoethyl-2,2-diphenylvalerate hydrochloride and n-octylamine, and slightly by cytochrome c; flavin mononucleotide greatly enhanced this activity. 3-Nitrofluoranthene microsomal nitroreductase activity was increased by phenobarbital rat pretreatment and this increment correlated well with the content of cytochrome P450. These results indicate a participation of cytochrome P450 in the reductive metabolism of NFs by rat liver microsomes.

UI MeSH Term Description Entries
D008297 Male Males
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D009153 Mutagens Chemical agents that increase the rate of genetic mutation by interfering with the function of nucleic acids. A clastogen is a specific mutagen that causes breaks in chromosomes. Clastogen,Clastogens,Genotoxin,Genotoxins,Mutagen
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D002273 Carcinogens Substances that increase the risk of NEOPLASMS in humans or animals. Both genotoxic chemicals, which affect DNA directly, and nongenotoxic chemicals, which induce neoplasms by other mechanism, are included. Carcinogen,Oncogen,Oncogens,Tumor Initiator,Tumor Initiators,Tumor Promoter,Tumor Promoters,Initiator, Tumor,Initiators, Tumor,Promoter, Tumor,Promoters, Tumor
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D005449 Fluorenes A family of diphenylenemethane derivatives.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

M A Belisario, and R Pecce, and R Della Morte, and A R Arena, and A Cecinato, and P Ciccioli, and N Staiano
January 1980, Naunyn-Schmiedeberg's archives of pharmacology,
M A Belisario, and R Pecce, and R Della Morte, and A R Arena, and A Cecinato, and P Ciccioli, and N Staiano
February 1986, Biochemical pharmacology,
M A Belisario, and R Pecce, and R Della Morte, and A R Arena, and A Cecinato, and P Ciccioli, and N Staiano
June 1993, Carcinogenesis,
M A Belisario, and R Pecce, and R Della Morte, and A R Arena, and A Cecinato, and P Ciccioli, and N Staiano
January 1984, Drug metabolism and disposition: the biological fate of chemicals,
M A Belisario, and R Pecce, and R Della Morte, and A R Arena, and A Cecinato, and P Ciccioli, and N Staiano
January 1991, Chemical & pharmaceutical bulletin,
M A Belisario, and R Pecce, and R Della Morte, and A R Arena, and A Cecinato, and P Ciccioli, and N Staiano
June 1997, Carcinogenesis,
M A Belisario, and R Pecce, and R Della Morte, and A R Arena, and A Cecinato, and P Ciccioli, and N Staiano
January 1998, Journal of toxicology and environmental health. Part A,
M A Belisario, and R Pecce, and R Della Morte, and A R Arena, and A Cecinato, and P Ciccioli, and N Staiano
December 1997, Photochemistry and photobiology,
M A Belisario, and R Pecce, and R Della Morte, and A R Arena, and A Cecinato, and P Ciccioli, and N Staiano
May 1984, Mutation research,
M A Belisario, and R Pecce, and R Della Morte, and A R Arena, and A Cecinato, and P Ciccioli, and N Staiano
April 1985, Biochemical pharmacology,
Copied contents to your clipboard!