Comparative studies on Marek's disease virus and herpesvirus of turkey DNAs. 1979

K Hirai, and K Ikuta, and S Kato

DNA of Marek's disease virus (MDV) was compared to that of herpes virus of turkey (HVT). Centrifugation of the two virus DNAs in neutral glycerol and CsCl density gradients showed that the MDV genome was slightly larger than that of HVT and that the buoyant density (1.705 g/ml) of MDV DNA in CsCl gradients was slightly lower than that (1.707 g/ml) of HVT DNA. MDV and HVT DNAs were digested with either EcoRI or HindIII restriction endonuclease and analysed by 0.5% agarose gel electrophoresis. The cleavage patterns of HindIII or EcoRI DNA digests of two strains of these two viruses showed general similarities between the strains, but not between MDV and HVT. However, a few fragments of EcoRI or HindIII digests of MDV DNA co-migrated with those of HVT DNA. DNA-DNA reassociation kinetics and DNA-RNA hybridization between the two viruses indicated that MDV and HVT DNAs share detectable homology, although it is less than 5%. The DNA of a HVT variant, which has lost the ability to protect chickens from Marek's disease, appeared similar to DNA of the vaccine strain in the size buoyant density and in its restriction endonuclease cleavage pattern.

UI MeSH Term Description Entries
D008381 Herpesvirus 2, Gallid The type species of the genus MARDIVIRUS in the family HERPESVIRIDAE. It is the etiologic agent of MAREK DISEASE, infecting domestic fowl and wild birds. Fowl Paralysis Virus,Marek's Disease Herpesvirus 1,Marek's Disease Virus Serotype 1,Neurolymphomatosis Virus,Gallid Herpesvirus 2,Herpesvirus 2 (gamma), Gallid,Marek Disease Herpesvirus 1,Fowl Paralysis Viruses,Neurolymphomatosis Viruses,Paralysis Virus, Fowl,Paralysis Viruses, Fowl
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D002499 Centrifugation, Density Gradient Separation of particles according to density by employing a gradient of varying densities. At equilibrium each particle settles in the gradient at a point equal to its density. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Centrifugations, Density Gradient,Density Gradient Centrifugation,Density Gradient Centrifugations,Gradient Centrifugation, Density,Gradient Centrifugations, Density
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D006564 Herpesviridae A family of enveloped, linear, double-stranded DNA viruses infecting a wide variety of animals. Subfamilies, based on biological characteristics, include: ALPHAHERPESVIRINAE; BETAHERPESVIRINAE; and GAMMAHERPESVIRINAE. Mouse Thymic Virus,Murid herpesvirus 3,Thymic Group Viruses,Herpesviruses,Mouse Thymic Viruses,Thymic Virus, Mouse,Thymic Viruses, Mouse
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D014422 Turkeys Large woodland game BIRDS in the subfamily Meleagridinae, family Phasianidae, order GALLIFORMES. Formerly they were considered a distinct family, Melegrididae. Meleagridinae,Meleagrididae

Related Publications

K Hirai, and K Ikuta, and S Kato
January 1979, Comparative immunology, microbiology and infectious diseases,
K Hirai, and K Ikuta, and S Kato
October 1983, Zentralblatt fur Veterinarmedizin. Reihe B. Journal of veterinary medicine. Series B,
K Hirai, and K Ikuta, and S Kato
December 1973, Applied microbiology,
K Hirai, and K Ikuta, and S Kato
September 1983, Zentralblatt fur Veterinarmedizin. Reihe B. Journal of veterinary medicine. Series B,
K Hirai, and K Ikuta, and S Kato
April 1979, American journal of veterinary research,
K Hirai, and K Ikuta, and S Kato
March 1981, Journal of the National Cancer Institute,
K Hirai, and K Ikuta, and S Kato
March 1973, Zentralblatt fur Veterinarmedizin. Reihe B. Journal of veterinary medicine. Series B,
K Hirai, and K Ikuta, and S Kato
May 1975, Infection and immunity,
K Hirai, and K Ikuta, and S Kato
May 1987, Research in veterinary science,
K Hirai, and K Ikuta, and S Kato
February 1979, Virology,
Copied contents to your clipboard!