Synaptic connections and functional organization in Aplysia buccal ganglia. 1979

L Fiore, and J M Meunier

The buccal ganglion of Aplysia contains three morpho-functional groups (A, B, and C) of large cells and two groups (s1 and s2) of small cells. The A cells evoke monoxynaptic IPSPs in the B cells. We found that s1 cells can evoke large EPSPs in the A cells, IEPSPs in the B cells, and EIIPSPs in the C cells; several s1 cells are able to evoke all three types of responses. Many s2 cells can evoke these same responses, but only in the A and B cells. Furthermore, the s cells can evoke depolarizing PSPs in other s cells; this relation is often reciprocal. All these responses may also be contralateral. Their monosynaptic nature is shown by the consistent 1:1 relationship with the presynaptic spike, and also by the effects of intracellular tetraethylammonium and of high Mg2+ concentration in the bathing medium. d-tubocurarine reversibly suppresses the I phase of the IEPSP evoked by the s cells in the B cells. All the responses evoked by the s cells undergo depression with repetition. The network formed by all these relations is outlined, and a double relationship proposed between s cells and B cells. By electrophysiological tracing of axonal pathways it is shown that the A cells send axons into the 3rd buccal nerve, the B cells into the 2nd and/or 3rd buccal nerve and in two cases into the radular nerve, and the C cells into the gastro-oesophageal nerve. Spontaneous synaptic activity of the buccal neurons appears to be formed mostly by the described PSPs. Spontaneous firing inside the isolated ganglion corresponds well to the alternate pattern of muscular contractions of the buccal mass.

UI MeSH Term Description Entries
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D002610 Cheek The part of the face that is below the eye and to the side of the nose and mouth. Bucca,Buccas,Cheeks
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D005724 Ganglia Clusters of multipolar neurons surrounded by a capsule of loosely organized CONNECTIVE TISSUE located outside the CENTRAL NERVOUS SYSTEM.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001048 Aplysia An opisthobranch mollusk of the order Anaspidea. It is used frequently in studies of nervous system development because of its large identifiable neurons. Aplysiatoxin and its derivatives are not biosynthesized by Aplysia, but acquired by ingestion of Lyngbya (seaweed) species. Aplysias
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse

Related Publications

L Fiore, and J M Meunier
August 1971, Science (New York, N.Y.),
L Fiore, and J M Meunier
December 2001, Journal of comparative physiology. A, Sensory, neural, and behavioral physiology,
L Fiore, and J M Meunier
July 1980, The Journal of physiology,
L Fiore, and J M Meunier
January 1977, The Journal of physiology,
L Fiore, and J M Meunier
October 2014, Science (New York, N.Y.),
L Fiore, and J M Meunier
December 1975, Brain research,
Copied contents to your clipboard!