Discovery and characterization of novel, potent, and selective cytochrome P450 2J2 inhibitors. 2013

Shuang Ren, and Juan Zeng, and Ye Mei, and John Z H Zhang, and S Frank Yan, and Jian Fei, and Li Chen
School of Life Science and Technology, Tongji University, 1239 Si Ping Road, Shanghai 200092, China.

Cytochrome P450 (CYP) 2J2 is one of the human CYPs involved in phase I xenobiotics metabolism. It is mainly expressed in extrahepatic tissues, including intestine and cardiovascular systems. The general role of CYP2J2 in drug metabolism is not yet fully understood, and the recent discovery that CYP2J2 can metabolize a wide range of structurally diverse drugs and its primary distribution in the intestine suggest its potentially indispensable role in first-pass intestinal metabolism and involvement in drug-drug interaction. To fully characterize its role in drug metabolism, selective and potent inhibitors of CYP2J2 are necessary tools. In the current study, 69 known drugs were screened for the inhibition of CYP2J2, and we discovered a number of marketed drugs as potent and selective CYP2J2 inhibitors. In particular, telmisartan and flunarizine have CYP2J2 inhibition IC(50) values of 0.42 μM and 0.94 μM, respectively, which are at least 10-fold more selective against all other major metabolizing CYPs; moreover, they are not substrates of CYP2J2 and show no time-dependent inhibition toward this CYP. The results of enzyme kinetics studies, supported by molecular modeling, have also elucidated that telmisartan is a mixed-type inhibitor, and flunarizine competitively inhibits CYP2J2. The K(i) for telmisartan is 0.19 μM, with an α value, an indicator of the type of inhibition mechanism, of 2.80, and flunarizine has a K(i) value of 0.13 μM. These newly discovered CYP2J2 inhibitors can be potentially used as a tool to study CYP2J2 in drug metabolism and interaction in a clinical setting.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000090762 Cytochrome P-450 CYP2J2 A cytochrome P450 enzyme involved in oxidizing POLYUNSATURATED FATTY ACIDS (PUFA) to PUFA epoxides which function as potent lipid mediators. This enzyme, encoded by CYP2J2 gene, metabolizes ARACHIDONIC ACID to epoxyeicosatrienoic acids (EETs) which produce biological effects including VASODILATION. Arachidonate Epoxygenase,Arachidonic Acid Epoxygenase,Cytochrome P-450 Arachidonate Oxygenase,Cytochrome P-450 Epoxygenase,NADPH-Dependent Arachidonic Acid Epoxygenase,CYP2J2,Acid Epoxygenase, Arachidonic,Cytochrome P 450 Arachidonate Oxygenase,Cytochrome P 450 CYP2J2,Epoxygenase, Arachidonate,Epoxygenase, Arachidonic Acid,NADPH Dependent Arachidonic Acid Epoxygenase
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D055808 Drug Discovery The process of finding chemicals for potential therapeutic use. Drug Prospecting,Discovery, Drug,Prospecting, Drug

Related Publications

Shuang Ren, and Juan Zeng, and Ye Mei, and John Z H Zhang, and S Frank Yan, and Jian Fei, and Li Chen
August 2007, Archives of biochemistry and biophysics,
Shuang Ren, and Juan Zeng, and Ye Mei, and John Z H Zhang, and S Frank Yan, and Jian Fei, and Li Chen
May 2006, Bioorganic & medicinal chemistry letters,
Shuang Ren, and Juan Zeng, and Ye Mei, and John Z H Zhang, and S Frank Yan, and Jian Fei, and Li Chen
January 2002, Journal of medicinal chemistry,
Shuang Ren, and Juan Zeng, and Ye Mei, and John Z H Zhang, and S Frank Yan, and Jian Fei, and Li Chen
July 2017, Drug metabolism and disposition: the biological fate of chemicals,
Shuang Ren, and Juan Zeng, and Ye Mei, and John Z H Zhang, and S Frank Yan, and Jian Fei, and Li Chen
October 2011, Bioorganic & medicinal chemistry letters,
Shuang Ren, and Juan Zeng, and Ye Mei, and John Z H Zhang, and S Frank Yan, and Jian Fei, and Li Chen
April 2021, European journal of medicinal chemistry,
Shuang Ren, and Juan Zeng, and Ye Mei, and John Z H Zhang, and S Frank Yan, and Jian Fei, and Li Chen
February 2010, Drug metabolism and disposition: the biological fate of chemicals,
Shuang Ren, and Juan Zeng, and Ye Mei, and John Z H Zhang, and S Frank Yan, and Jian Fei, and Li Chen
March 2014, Toxicological research,
Shuang Ren, and Juan Zeng, and Ye Mei, and John Z H Zhang, and S Frank Yan, and Jian Fei, and Li Chen
August 2014, Chemical research in toxicology,
Shuang Ren, and Juan Zeng, and Ye Mei, and John Z H Zhang, and S Frank Yan, and Jian Fei, and Li Chen
January 2012, Bioorganic & medicinal chemistry letters,
Copied contents to your clipboard!