Bovine herpesvirus 4 genome: cloning, mapping and strain variation analysis. 1990

M Bublot, and M F Van Bressem, and E Thiry, and J Dubuisson, and P P Pastoret
Department of Virology-Immunology, Faculty of Veterinary Medicine, University of Liège, Brussels, Belgium.

The restriction map of the bovine herpesvirus 4 (BHV-4) genome (V. Test strain) was established for the restriction enzymes EcoRI, BamHI and HindIII by analysis of clones from a lambda library (Sau3AI partial digestion) and from a plasmid library (EcoRI fragments). One genome unit was defined as the length of the unique central part, flanked at both ends by one of the terminal tandem repeats called polyrepetitive DNA (prDNA) and was estimated to be 113 +/- 2 kbp. A restriction map of the prDNA of the V. Test strain showed internal 200 bp tandem repeats of different sequences. This region in the prDNA was highly polymorphic between BHV-4 strains, even in a viral DNA preparation from a plaque-purified strain. The right junction between the repeated and the unique sequence of the genome occurred at an almost constant site, but the left junction contained a modified prDNA and was variable between BHV-4 strains. The unique central part of the genome was very similar in the four strains under consideration, with a few variations due to the presence or absence of a restriction site and four length variations were observed, located at positions 0.006 to 0.034 (left end), 0.211 to 0.225, 0.864 to 0.881 and 0.962 to 0.984 (right end). The total length variation of 1 genome unit does not exceed 1 kbp.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D012091 Repetitive Sequences, Nucleic Acid Sequences of DNA or RNA that occur in multiple copies. There are several types: INTERSPERSED REPETITIVE SEQUENCES are copies of transposable elements (DNA TRANSPOSABLE ELEMENTS or RETROELEMENTS) dispersed throughout the genome. TERMINAL REPEAT SEQUENCES flank both ends of another sequence, for example, the long terminal repeats (LTRs) on RETROVIRUSES. Variations may be direct repeats, those occurring in the same direction, or inverted repeats, those opposite to each other in direction. TANDEM REPEAT SEQUENCES are copies which lie adjacent to each other, direct or inverted (INVERTED REPEAT SEQUENCES). DNA Repetitious Region,Direct Repeat,Genes, Selfish,Nucleic Acid Repetitive Sequences,Repetitive Region,Selfish DNA,Selfish Genes,DNA, Selfish,Repetitious Region, DNA,Repetitive Sequence,DNA Repetitious Regions,DNAs, Selfish,Direct Repeats,Gene, Selfish,Repeat, Direct,Repeats, Direct,Repetitious Regions, DNA,Repetitive Regions,Repetitive Sequences,Selfish DNAs,Selfish Gene
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D003429 Cross Reactions Serological reactions in which an antiserum against one antigen reacts with a non-identical but closely related antigen. Cross Reaction,Reaction, Cross,Reactions, Cross
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D004587 Electrophoresis, Agar Gel Electrophoresis in which agar or agarose gel is used as the diffusion medium. Electrophoresis, Agarose Gel,Agar Gel Electrophoresis,Agarose Gel Electrophoresis,Gel Electrophoresis, Agar,Gel Electrophoresis, Agarose
D006564 Herpesviridae A family of enveloped, linear, double-stranded DNA viruses infecting a wide variety of animals. Subfamilies, based on biological characteristics, include: ALPHAHERPESVIRINAE; BETAHERPESVIRINAE; and GAMMAHERPESVIRINAE. Mouse Thymic Virus,Murid herpesvirus 3,Thymic Group Viruses,Herpesviruses,Mouse Thymic Viruses,Thymic Virus, Mouse,Thymic Viruses, Mouse
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M Bublot, and M F Van Bressem, and E Thiry, and J Dubuisson, and P P Pastoret
January 1992, Intervirology,
M Bublot, and M F Van Bressem, and E Thiry, and J Dubuisson, and P P Pastoret
July 1983, Journal of virology,
M Bublot, and M F Van Bressem, and E Thiry, and J Dubuisson, and P P Pastoret
January 1990, Archives of virology,
M Bublot, and M F Van Bressem, and E Thiry, and J Dubuisson, and P P Pastoret
January 1992, Archives of virology,
M Bublot, and M F Van Bressem, and E Thiry, and J Dubuisson, and P P Pastoret
August 2011, Virology journal,
M Bublot, and M F Van Bressem, and E Thiry, and J Dubuisson, and P P Pastoret
August 1996, The Journal of general virology,
M Bublot, and M F Van Bressem, and E Thiry, and J Dubuisson, and P P Pastoret
January 1992, Archives of virology,
M Bublot, and M F Van Bressem, and E Thiry, and J Dubuisson, and P P Pastoret
January 1996, Archives of virology,
M Bublot, and M F Van Bressem, and E Thiry, and J Dubuisson, and P P Pastoret
July 1985, Journal of virology,
M Bublot, and M F Van Bressem, and E Thiry, and J Dubuisson, and P P Pastoret
January 2009, Archives of virology,
Copied contents to your clipboard!