Establishment of a new conditionally immortalized cell line from human brain microvascular endothelial cells: a promising tool for human blood-brain barrier studies. 2012

Atsuko Kamiichi, and Tomomi Furihata, and Satoshi Kishida, and Yuki Ohta, and Kosuke Saito, and Shinya Kawamatsu, and Kan Chiba
Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8675, Japan.

The blood-brain barrier (BBB) is formed by brain microvascular endothelial cells (BMEC) working together with astrocytes and pericytes, in which tight junctions and various transporters strictly regulate the penetration of diverse compounds into the brain. Clarification of the molecular machinery that provides such regulation using in vitro BBB models has provided important insights into the roles of the BBB in central nervous system (CNS) disorders and CNS drug development. In this study, we succeeded in establishing a new cell line, hereinafter referred to as human BMEC/conditionally immortalized, clone β (HBMEC/ciβ), as part of our ongoing efforts to develop an in vitro human BBB model. Our results showed that HBMEC/ciβ proliferated well. Furthermore, we found that HBMEC/ciβ exhibited the barrier property of restricting small molecule intercellular penetration and possessed effective efflux transporter functions, both of which are essential to a functioning BBB. Because higher temperatures are known to terminate immortalization signals, we specifically examined the effects of higher temperatures on the HBMEC/ciβ differentiation status. The results showed that higher temperatures stimulated HBMEC/ciβ differentiation, marked by morphological alteration and increases in several mRNA levels. To summarize, our data indicates that the newly established HBMEC/ciβ offers a promising tool for use in the development of a practical in vitro human BBB model that could make significant contributions toward understanding the molecular biology of CNS disorders, as well as to CNS drug development. It is also believed that the development of a specific culture method for HBMEC/ciβ will add significant value to the HBMEC/ciβ-based BBB model.

UI MeSH Term Description Entries
D009363 Neoplasm Proteins Proteins whose abnormal expression (gain or loss) are associated with the development, growth, or progression of NEOPLASMS. Some neoplasm proteins are tumor antigens (ANTIGENS, NEOPLASM), i.e. they induce an immune reaction to their tumor. Many neoplasm proteins have been characterized and are used as tumor markers (BIOMARKERS, TUMOR) when they are detectable in cells and body fluids as monitors for the presence or growth of tumors. Abnormal expression of ONCOGENE PROTEINS is involved in neoplastic transformation, whereas the loss of expression of TUMOR SUPPRESSOR PROTEINS is involved with the loss of growth control and progression of the neoplasm. Proteins, Neoplasm
D001812 Blood-Brain Barrier Specialized non-fenestrated tightly-joined ENDOTHELIAL CELLS with TIGHT JUNCTIONS that form a transport barrier for certain substances between the cerebral capillaries and the BRAIN tissue. Brain-Blood Barrier,Hemato-Encephalic Barrier,Barrier, Blood-Brain,Barrier, Brain-Blood,Barrier, Hemato-Encephalic,Barriers, Blood-Brain,Barriers, Brain-Blood,Barriers, Hemato-Encephalic,Blood Brain Barrier,Blood-Brain Barriers,Brain Blood Barrier,Brain-Blood Barriers,Hemato Encephalic Barrier,Hemato-Encephalic Barriers
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002461 Cell Line, Transformed Eukaryotic cell line obtained in a quiescent or stationary phase which undergoes conversion to a state of unregulated growth in culture, resembling an in vitro tumor. It occurs spontaneously or through interaction with viruses, oncogenes, radiation, or drugs/chemicals. Transformed Cell Line,Cell Lines, Transformed,Transformed Cell Lines
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000070997 ATP Binding Cassette Transporter, Subfamily G, Member 2 ATP-binding cassette transporter, sub-family G protein that functions as a high capacity UREA exporter, transporter of STEROLS, and in the absorption and efflux of many drugs. Its efflux activity for ANTINEOPLASTIC AGENTS contributes to DRUG RESISTANCE. It functions as a homodimer and is expressed by cells in a variety of organs, as well as by NEOPLASTIC STEM CELLS. ABCG2 Protein,ABCG2 Transporter,ATP Binding Cassette Transporter, Sub-Family G, Member 2,CD338 Antigen
D001253 Astrocytes A class of large neuroglial (macroglial) cells in the central nervous system - the largest and most numerous neuroglial cells in the brain and spinal cord. Astrocytes (from "star" cells) are irregularly shaped with many long processes, including those with "end feet" which form the glial (limiting) membrane and directly and indirectly contribute to the BLOOD-BRAIN BARRIER. They regulate the extracellular ionic and chemical environment, and "reactive astrocytes" (along with MICROGLIA) respond to injury. Astroglia,Astroglia Cells,Astroglial Cells,Astrocyte,Astroglia Cell,Astroglial Cell,Astroglias,Cell, Astroglia,Cell, Astroglial
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D042783 Endothelial Cells Highly specialized EPITHELIAL CELLS that line the HEART; BLOOD VESSELS; and lymph vessels, forming the ENDOTHELIUM. They are polygonal in shape and joined together by TIGHT JUNCTIONS. The tight junctions allow for variable permeability to specific macromolecules that are transported across the endothelial layer. Capillary Endothelial Cells,Lymphatic Endothelial Cells,Vascular Endothelial Cells,Capillary Endothelial Cell,Cell, Capillary Endothelial,Cell, Endothelial,Cell, Lymphatic Endothelial,Cell, Vascular Endothelial,Cells, Capillary Endothelial,Cells, Endothelial,Cells, Lymphatic Endothelial,Cells, Vascular Endothelial,Endothelial Cell,Endothelial Cell, Capillary,Endothelial Cell, Lymphatic,Endothelial Cell, Vascular,Endothelial Cells, Capillary,Endothelial Cells, Lymphatic,Endothelial Cells, Vascular,Lymphatic Endothelial Cell,Vascular Endothelial Cell
D062507 Claudin-5 A claudin subtype that is found localized to TIGHT JUNCTIONS in VASCULAR ENDOTHELIAL CELLS. The protein was initially identified as one of several proteins which are deleted in VELOCARDIOFACIAL SYNDROME and may play an important role in maintaining the integrity of the BLOOD-BRAIN BARRIER. Claudin 5,TMVCF Protein,Transmembrane Protein Deleted in Velocardiofacial Syndrome

Related Publications

Atsuko Kamiichi, and Tomomi Furihata, and Satoshi Kishida, and Yuki Ohta, and Kosuke Saito, and Shinya Kawamatsu, and Kan Chiba
November 2010, Journal of cellular physiology,
Atsuko Kamiichi, and Tomomi Furihata, and Satoshi Kishida, and Yuki Ohta, and Kosuke Saito, and Shinya Kawamatsu, and Kan Chiba
December 2017, Journal of cellular physiology,
Atsuko Kamiichi, and Tomomi Furihata, and Satoshi Kishida, and Yuki Ohta, and Kosuke Saito, and Shinya Kawamatsu, and Kan Chiba
July 2018, Molecular neurobiology,
Atsuko Kamiichi, and Tomomi Furihata, and Satoshi Kishida, and Yuki Ohta, and Kosuke Saito, and Shinya Kawamatsu, and Kan Chiba
December 1992, The Journal of investigative dermatology,
Atsuko Kamiichi, and Tomomi Furihata, and Satoshi Kishida, and Yuki Ohta, and Kosuke Saito, and Shinya Kawamatsu, and Kan Chiba
January 2016, PloS one,
Atsuko Kamiichi, and Tomomi Furihata, and Satoshi Kishida, and Yuki Ohta, and Kosuke Saito, and Shinya Kawamatsu, and Kan Chiba
March 2013, Cellular and molecular neurobiology,
Atsuko Kamiichi, and Tomomi Furihata, and Satoshi Kishida, and Yuki Ohta, and Kosuke Saito, and Shinya Kawamatsu, and Kan Chiba
November 2019, Molecular pharmaceutics,
Atsuko Kamiichi, and Tomomi Furihata, and Satoshi Kishida, and Yuki Ohta, and Kosuke Saito, and Shinya Kawamatsu, and Kan Chiba
May 2021, Laboratory investigation; a journal of technical methods and pathology,
Atsuko Kamiichi, and Tomomi Furihata, and Satoshi Kishida, and Yuki Ohta, and Kosuke Saito, and Shinya Kawamatsu, and Kan Chiba
August 2012, Journal of visualized experiments : JoVE,
Atsuko Kamiichi, and Tomomi Furihata, and Satoshi Kishida, and Yuki Ohta, and Kosuke Saito, and Shinya Kawamatsu, and Kan Chiba
June 2010, Zhongguo dang dai er ke za zhi = Chinese journal of contemporary pediatrics,
Copied contents to your clipboard!