The geometric transfer function for cone and fan beam collimators. 1990

B M Tsui, and G T Gullberg
Department of Radiology, University of North Carolina, Chapel Hill, 27514.

Geometric response functions are derived for both cone and fan beam collimators for the scintillation camera. The formulation is based on an effective response function which is determined by the geometric response of a single hole. The technique provides an accurate description of the spatial resolution by characterising the complete geometric response function which includes the effects of the shape and orientation of the collimator holes. The theoretical formulation was used to design a fan beam collimator for SPECT imaging and was shown to agree well with the experimental results.

UI MeSH Term Description Entries
D004867 Equipment Design Methods and patterns of fabricating machines and related hardware. Design, Equipment,Device Design,Medical Device Design,Design, Medical Device,Designs, Medical Device,Device Design, Medical,Device Designs, Medical,Medical Device Designs,Design, Device,Designs, Device,Designs, Equipment,Device Designs,Equipment Designs
D015899 Tomography, Emission-Computed, Single-Photon A method of computed tomography that uses radionuclides which emit a single photon of a given energy. The camera is rotated 180 or 360 degrees around the patient to capture images at multiple positions along the arc. The computer is then used to reconstruct the transaxial, sagittal, and coronal images from the 3-dimensional distribution of radionuclides in the organ. The advantages of SPECT are that it can be used to observe biochemical and physiological processes as well as size and volume of the organ. The disadvantage is that, unlike positron-emission tomography where the positron-electron annihilation results in the emission of 2 photons at 180 degrees from each other, SPECT requires physical collimation to line up the photons, which results in the loss of many available photons and hence degrades the image. CAT Scan, Single-Photon Emission,CT Scan, Single-Photon Emission,Radionuclide Tomography, Single-Photon Emission-Computed,SPECT,Single-Photon Emission-Computed Tomography,Tomography, Single-Photon, Emission-Computed,Single-Photon Emission CT Scan,Single-Photon Emission Computer-Assisted Tomography,Single-Photon Emission Computerized Tomography,CAT Scan, Single Photon Emission,CT Scan, Single Photon Emission,Emission-Computed Tomography, Single-Photon,Radionuclide Tomography, Single Photon Emission Computed,Single Photon Emission CT Scan,Single Photon Emission Computed Tomography,Single Photon Emission Computer Assisted Tomography,Single Photon Emission Computerized Tomography,Tomography, Single-Photon Emission-Computed
D015902 Gamma Cameras Electronic instruments that produce photographs or cathode-ray tube images of the gamma-ray emissions from organs containing radionuclide tracers. Scintillation Cameras,Nuclear Cameras,Scinti-Cameras,Camera, Gamma,Camera, Nuclear,Camera, Scintillation,Cameras, Gamma,Cameras, Nuclear,Cameras, Scintillation,Gamma Camera,Nuclear Camera,Scinti Cameras,Scinti-Camera,Scintillation Camera

Related Publications

B M Tsui, and G T Gullberg
February 2001, European journal of nuclear medicine,
B M Tsui, and G T Gullberg
December 1974, Journal of nuclear medicine : official publication, Society of Nuclear Medicine,
B M Tsui, and G T Gullberg
April 1999, European journal of nuclear medicine,
B M Tsui, and G T Gullberg
November 1980, Physics in medicine and biology,
B M Tsui, and G T Gullberg
October 2013, Medical physics,
B M Tsui, and G T Gullberg
March 2009, Physics in medicine and biology,
B M Tsui, and G T Gullberg
May 2018, Physics in medicine and biology,
B M Tsui, and G T Gullberg
August 2012, Progress in biophysics and molecular biology,
Copied contents to your clipboard!