Hybridization potential of oligonucleotides comprising 3'-O-methylated altritol nucleosides. 2012

G Chatelain, and G Schepers, and J Rozenski, and Arthur Van Aerschot
Laboratory for Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium.

A series of 3'-O-methylated-d-altrohexitol nucleoside analogs (MANA) was synthesized comprising all four base moieties, adenine, cytosine, uracil, and guanine. These monomers were incorporated into oligonucleotides (ONs) by automated solid phase synthesis and the thermal and thermodynamic stability of all new modified constructs were evaluated. Data were compared with results obtained for both anhydrohexitol (HNAs) and 3'-O-altrohexitol-modified ONs (ANAs). We hereby demonstrate that ONs modified with MANA monomers have an improved thermal and thermodynamic stability compared to RNA, ANA, or HNA containing ONs of which the extent depends on the number of incorporated moieties and their position in the sequence. Thermodynamic analysis afforded comparable or even improved results in comparison with the incorporation of locked nucleic acids. While the specificity of these new synthons is slightly lower compared to mismatches within RNA double strands, it is similar to the discrimination potential of other hexitol modifications (HNA and ANA) which already proved their biologic interest, highlighting the potential of MANA constructs in antisense and in siRNA applications.

UI MeSH Term Description Entries
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D009705 Nucleosides Purine or pyrimidine bases attached to a ribose or deoxyribose. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Nucleoside,Nucleoside Analog,Nucleoside Analogs,Analog, Nucleoside,Analogs, Nucleoside
D009841 Oligonucleotides Polymers made up of a few (2-20) nucleotides. In molecular genetics, they refer to a short sequence synthesized to match a region where a mutation is known to occur, and then used as a probe (OLIGONUCLEOTIDE PROBES). (Dorland, 28th ed) Oligonucleotide
D003596 Cytosine A pyrimidine base that is a fundamental unit of nucleic acids.
D006147 Guanine
D000225 Adenine A purine base and a fundamental unit of ADENINE NUCLEOTIDES. Vitamin B 4,4, Vitamin B,B 4, Vitamin
D013402 Sugar Alcohols Polyhydric alcohols having no more than one hydroxy group attached to each carbon atom. They are formed by the reduction of the carbonyl group of a sugar to a hydroxyl group. (From Dorland, 28th ed) Alcohols, Sugar,Alditol,Sugar Alcohol,Alditols,Alcohol, Sugar
D013816 Thermodynamics A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed) Thermodynamic
D014466 Ultraviolet Rays That portion of the electromagnetic spectrum immediately below the visible range and extending into the x-ray frequencies. The longer wavelengths (near-UV or biotic or vital rays) are necessary for the endogenous synthesis of vitamin D and are also called antirachitic rays; the shorter, ionizing wavelengths (far-UV or abiotic or extravital rays) are viricidal, bactericidal, mutagenic, and carcinogenic and are used as disinfectants. Actinic Rays,Black Light, Ultraviolet,UV Light,UV Radiation,Ultra-Violet Rays,Ultraviolet Light,Ultraviolet Radiation,Actinic Ray,Light, UV,Light, Ultraviolet,Radiation, UV,Radiation, Ultraviolet,Ray, Actinic,Ray, Ultra-Violet,Ray, Ultraviolet,Ultra Violet Rays,Ultra-Violet Ray,Ultraviolet Black Light,Ultraviolet Black Lights,Ultraviolet Radiations,Ultraviolet Ray

Related Publications

G Chatelain, and G Schepers, and J Rozenski, and Arthur Van Aerschot
October 2001, Nucleic acids research,
G Chatelain, and G Schepers, and J Rozenski, and Arthur Van Aerschot
January 2004, Nucleosides, nucleotides & nucleic acids,
G Chatelain, and G Schepers, and J Rozenski, and Arthur Van Aerschot
January 2008, The Journal of organic chemistry,
G Chatelain, and G Schepers, and J Rozenski, and Arthur Van Aerschot
January 2011, Organic & biomolecular chemistry,
G Chatelain, and G Schepers, and J Rozenski, and Arthur Van Aerschot
January 1985, Nucleic acids symposium series,
G Chatelain, and G Schepers, and J Rozenski, and Arthur Van Aerschot
January 2000, Chemistry (Weinheim an der Bergstrasse, Germany),
G Chatelain, and G Schepers, and J Rozenski, and Arthur Van Aerschot
February 2007, Analytical biochemistry,
G Chatelain, and G Schepers, and J Rozenski, and Arthur Van Aerschot
January 1973, Chemische Berichte,
G Chatelain, and G Schepers, and J Rozenski, and Arthur Van Aerschot
January 1972, Chemische Berichte,
G Chatelain, and G Schepers, and J Rozenski, and Arthur Van Aerschot
February 2024, Angewandte Chemie (International ed. in English),
Copied contents to your clipboard!