Limited recovery of striatal dopaminergic fibers by adrenal medullary grafts in MPTP-treated aging mice. 1990

I Date, and S Y Felten, and J A Olschowka, and D L Felten
Department of Neurobiology & Anatomy, University of Rochester School of Medicine, New York 14642.

Systemic injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) damages the dopaminergic (DA) nigrostriatal system in C57BL/6 mice. We have investigated the effect of MPTP neurotoxicity and subsequent adrenal medullary grafts into the striatum of young (2-3 months) and aging (12 months) mice. MPTP treatment (4 X 20 mg/kg ip given 3 or 12 h apart in young mice and 12 h apart in aging mice) resulted in 80-90% depletion of striatal DA and virtual disappearance of tyrosine hydroxylase (TH)-immunoreactive (IR) fibers in both young and aging mice 1 week following treatment. Only partial recovery of TH-IR fibers was seen 5 weeks after MPTP treatment in young mice, while virtually no recovery was seen in aging mice. Adrenal medullary minced pieces were grafted into the striatum of young and aging mice 1 week after MPTP treatment. In young mice, dense TH-IR fibers were observed in the striatum on the grafted side 4 weeks later, far denser than those in sham-operated striatum. Although this staining was most prominent around the grafts, many TH-IR fibers also were found in the ventral striatum close to the nucleus accumbens. No such increase in TH-IR fibers was found on the nongrafted side. DA concentration on the grafted side recovered to 45% of the control level. In aging mice receiving similar grafts, TH-IR fibers also were observed in the grafted striatum, but were less dense and more restricted around the site of the graft compared with young mice. DA concentration on the grafted side was 29% of the control level. We conclude that the MPTP-depleted nigrostriatal DA system in aging mouse brain can recover partially following adrenal medullary grafts, but the degree of recovery is more limited compared with that in young brain.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D009412 Nerve Fibers Slender processes of NEURONS, including the AXONS and their glial envelopes (MYELIN SHEATH). Nerve fibers conduct nerve impulses to and from the CENTRAL NERVOUS SYSTEM. Cerebellar Mossy Fibers,Mossy Fibers, Cerebellar,Cerebellar Mossy Fiber,Mossy Fiber, Cerebellar,Nerve Fiber
D009416 Nerve Regeneration Renewal or physiological repair of damaged nerve tissue. Nerve Tissue Regeneration,Nervous Tissue Regeneration,Neural Tissue Regeneration,Nerve Tissue Regenerations,Nervous Tissue Regenerations,Neural Tissue Regenerations,Regeneration, Nerve,Regeneration, Nerve Tissue,Regeneration, Nervous Tissue,Regeneration, Neural Tissue,Tissue Regeneration, Nerve,Tissue Regeneration, Nervous,Tissue Regeneration, Neural
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D003342 Corpus Striatum Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE. Lenticular Nucleus,Lentiform Nucleus,Lentiform Nuclei,Nucleus Lentiformis,Lentiformis, Nucleus,Nuclei, Lentiform,Nucleus, Lenticular,Nucleus, Lentiform,Striatum, Corpus
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D000313 Adrenal Medulla The inner portion of the adrenal gland. Derived from ECTODERM, adrenal medulla consists mainly of CHROMAFFIN CELLS that produces and stores a number of NEUROTRANSMITTERS, mainly adrenaline (EPINEPHRINE) and NOREPINEPHRINE. The activity of the adrenal medulla is regulated by the SYMPATHETIC NERVOUS SYSTEM. Adrenal Medullas,Medulla, Adrenal,Medullas, Adrenal
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging

Related Publications

I Date, and S Y Felten, and J A Olschowka, and D L Felten
August 1987, Science (New York, N.Y.),
I Date, and S Y Felten, and J A Olschowka, and D L Felten
January 1991, Proceedings of the Western Pharmacology Society,
I Date, and S Y Felten, and J A Olschowka, and D L Felten
August 1988, Clinical neuropharmacology,
I Date, and S Y Felten, and J A Olschowka, and D L Felten
December 1985, Brain research bulletin,
I Date, and S Y Felten, and J A Olschowka, and D L Felten
December 1981, The Journal of pharmacology and experimental therapeutics,
I Date, and S Y Felten, and J A Olschowka, and D L Felten
May 2009, Parkinsonism & related disorders,
Copied contents to your clipboard!