| D009474 |
Neurons |
The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. |
Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron |
|
| D010455 |
Peptides |
Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. |
Peptide,Polypeptide,Polypeptides |
|
| D006135 |
Gryllidae |
The family Gryllidae consists of the common house cricket, Acheta domesticus, which is used in neurological and physiological studies. Other genera include Gryllotalpa (mole cricket); Gryllus (field cricket); and Oecanthus (tree cricket). |
Crickets,Cricket |
|
| D000584 |
Amiloride |
A pyrazine compound inhibiting SODIUM reabsorption through SODIUM CHANNELS in renal EPITHELIAL CELLS. This inhibition creates a negative potential in the luminal membranes of principal cells, located in the distal convoluted tubule and collecting duct. Negative potential reduces secretion of potassium and hydrogen ions. Amiloride is used in conjunction with DIURETICS to spare POTASSIUM loss. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p705) |
Amidal,Amiduret Trom,Amiloberag,Amiloride Hydrochloride,Amiloride Hydrochloride, Anhydrous,Kaluril,Midamor,Midoride,Modamide,Anhydrous Amiloride Hydrochloride,Hydrochloride, Amiloride,Hydrochloride, Anhydrous Amiloride,Trom, Amiduret |
|
| D000818 |
Animals |
Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. |
Animal,Metazoa,Animalia |
|
| D012604 |
Scorpion Venoms |
Venoms from animals of the order Scorpionida of the class Arachnida. They contain neuro- and hemotoxins, enzymes, and various other factors that may release acetylcholine and catecholamines from nerve endings. Of the several protein toxins that have been characterized, most are immunogenic. |
Scorpion Toxin,Scorpion Toxins,Scorpion Venom Peptide,Tityus serrulatus Venom,Scorpion Venom,alpha-Scorpion Toxin,beta-Scorpion Toxin,gamma-Scorpion Toxin,Peptide, Scorpion Venom,Toxin, Scorpion,Toxin, alpha-Scorpion,Toxin, beta-Scorpion,Venom Peptide, Scorpion,Venom, Scorpion,Venom, Tityus serrulatus,alpha Scorpion Toxin,beta Scorpion Toxin,gamma Scorpion Toxin |
|
| D012605 |
Scorpions |
Arthropods of the order Scorpiones, of which 1500 to 2000 species have been described. The most common live in tropical or subtropical areas. They are nocturnal and feed principally on insects and other arthropods. They are large arachnids but do not attack man spontaneously. They have a venomous sting. Their medical significance varies considerably and is dependent on their habits and venom potency rather than on their size. At most, the sting is equivalent to that of a hornet but certain species possess a highly toxic venom potentially fatal to humans. (From Dorland, 27th ed; Smith, Insects and Other Arthropods of Medical Importance, 1973, p417; Barnes, Invertebrate Zoology, 5th ed, p503) |
Scorpion |
|
| D015222 |
Sodium Channels |
Ion channels that specifically allow the passage of SODIUM ions. A variety of specific sodium channel subtypes are involved in serving specialized functions such as neuronal signaling, CARDIAC MUSCLE contraction, and KIDNEY function. |
Ion Channels, Sodium,Ion Channel, Sodium,Sodium Channel,Sodium Ion Channels,Channel, Sodium,Channel, Sodium Ion,Channels, Sodium,Channels, Sodium Ion,Sodium Ion Channel |
|
| D018408 |
Patch-Clamp Techniques |
An electrophysiologic technique for studying cells, cell membranes, and occasionally isolated organelles. All patch-clamp methods rely on a very high-resistance seal between a micropipette and a membrane; the seal is usually attained by gentle suction. The four most common variants include on-cell patch, inside-out patch, outside-out patch, and whole-cell clamp. Patch-clamp methods are commonly used to voltage clamp, that is control the voltage across the membrane and measure current flow, but current-clamp methods, in which the current is controlled and the voltage is measured, are also used. |
Patch Clamp Technique,Patch-Clamp Technic,Patch-Clamp Technique,Voltage-Clamp Technic,Voltage-Clamp Technique,Voltage-Clamp Techniques,Whole-Cell Recording,Patch-Clamp Technics,Voltage-Clamp Technics,Clamp Technique, Patch,Clamp Techniques, Patch,Patch Clamp Technic,Patch Clamp Technics,Patch Clamp Techniques,Recording, Whole-Cell,Recordings, Whole-Cell,Technic, Patch-Clamp,Technic, Voltage-Clamp,Technics, Patch-Clamp,Technics, Voltage-Clamp,Technique, Patch Clamp,Technique, Patch-Clamp,Technique, Voltage-Clamp,Techniques, Patch Clamp,Techniques, Patch-Clamp,Techniques, Voltage-Clamp,Voltage Clamp Technic,Voltage Clamp Technics,Voltage Clamp Technique,Voltage Clamp Techniques,Whole Cell Recording,Whole-Cell Recordings |
|