Differentiation of malignant and benign breast lesions using magnetization transfer imaging and dynamic contrast-enhanced MRI. 2013

Samantha L Heller, and Linda Moy, and Sherlin Lavianlivi, and Melanie Moccaldi, and Sungheon Kim
Department of Radiology, NYU School of Medicine, New York, New York 10016, USA. samantha.heller@nyumc.org

OBJECTIVE To evaluate feasibility of using magnetization transfer ratio (MTR) in conjunction with dynamic contrast-enhanced MRI (DCE-MRI) for differentiation of benign and malignant breast lesions at 3 Tesla. METHODS This prospective study was IRB and HIPAA compliant. DCE-MRI scans followed by MT imaging were performed on 41 patients. Regions of interest (ROIs) were drawn on co-registered MTR and DCE postcontrast images for breast structures, including benign lesions (BL) and malignant lesions (ML). Initial enhancement ratio (IER) and delayed enhancement ratio (DER) were calculated, as were normalized MTR, DER, and IER (NMTR, NDER, NIER) values. Diagnostic accuracy analysis was performed. RESULTS Mean MTR in ML was lower than in BL (P < 0.05); mean DER and mean IER in ML were significantly higher than in BL (P < 0.01, P < 0.001). NMTR, NDER, and NIER were significantly lower in ML versus BL (P < 0.007, P < 0.001, P < 0.001). IER had highest diagnostic accuracy (77.6%), sensitivity (86.2%), and area under the ROC curve (.879). MTR specificity was 100%. Logistic regression modeling with NMTR and NIER yielded best results for BL versus ML (sensitivity 93.1%, specificity 80%, AUC 0.884, accuracy 83.7%). CONCLUSIONS Isolated quantitative DCE analysis may increase specificity of breast MR for differentiating BL and ML. DCE-MRI with NMTR may produce a robust means of evaluating breast lesions.

UI MeSH Term Description Entries
D007091 Image Processing, Computer-Assisted A technique of inputting two-dimensional or three-dimensional images into a computer and then enhancing or analyzing the imagery into a form that is more useful to the human observer. Biomedical Image Processing,Computer-Assisted Image Processing,Digital Image Processing,Image Analysis, Computer-Assisted,Image Reconstruction,Medical Image Processing,Analysis, Computer-Assisted Image,Computer-Assisted Image Analysis,Computer Assisted Image Analysis,Computer Assisted Image Processing,Computer-Assisted Image Analyses,Image Analyses, Computer-Assisted,Image Analysis, Computer Assisted,Image Processing, Biomedical,Image Processing, Computer Assisted,Image Processing, Digital,Image Processing, Medical,Image Processings, Medical,Image Reconstructions,Medical Image Processings,Processing, Biomedical Image,Processing, Digital Image,Processing, Medical Image,Processings, Digital Image,Processings, Medical Image,Reconstruction, Image,Reconstructions, Image
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008279 Magnetic Resonance Imaging Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques. Chemical Shift Imaging,MR Tomography,MRI Scans,MRI, Functional,Magnetic Resonance Image,Magnetic Resonance Imaging, Functional,Magnetization Transfer Contrast Imaging,NMR Imaging,NMR Tomography,Tomography, NMR,Tomography, Proton Spin,fMRI,Functional Magnetic Resonance Imaging,Imaging, Chemical Shift,Proton Spin Tomography,Spin Echo Imaging,Steady-State Free Precession MRI,Tomography, MR,Zeugmatography,Chemical Shift Imagings,Echo Imaging, Spin,Echo Imagings, Spin,Functional MRI,Functional MRIs,Image, Magnetic Resonance,Imaging, Magnetic Resonance,Imaging, NMR,Imaging, Spin Echo,Imagings, Chemical Shift,Imagings, Spin Echo,MRI Scan,MRIs, Functional,Magnetic Resonance Images,Resonance Image, Magnetic,Scan, MRI,Scans, MRI,Shift Imaging, Chemical,Shift Imagings, Chemical,Spin Echo Imagings,Steady State Free Precession MRI
D008280 Magnetics The study of MAGNETIC PHENOMENA. Magnetic
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D011446 Prospective Studies Observation of a population for a sufficient number of persons over a sufficient number of years to generate incidence or mortality rates subsequent to the selection of the study group. Prospective Study,Studies, Prospective,Study, Prospective
D012044 Regression Analysis Procedures for finding the mathematical function which best describes the relationship between a dependent variable and one or more independent variables. In linear regression (see LINEAR MODELS) the relationship is constrained to be a straight line and LEAST-SQUARES ANALYSIS is used to determine the best fit. In logistic regression (see LOGISTIC MODELS) the dependent variable is qualitative rather than continuously variable and LIKELIHOOD FUNCTIONS are used to find the best relationship. In multiple regression, the dependent variable is considered to depend on more than a single independent variable. Regression Diagnostics,Statistical Regression,Analysis, Regression,Analyses, Regression,Diagnostics, Regression,Regression Analyses,Regression, Statistical,Regressions, Statistical,Statistical Regressions
D001940 Breast In humans, one of the paired regions in the anterior portion of the THORAX. The breasts consist of the MAMMARY GLANDS, the SKIN, the MUSCLES, the ADIPOSE TISSUE, and the CONNECTIVE TISSUES. Breasts
D001943 Breast Neoplasms Tumors or cancer of the human BREAST. Breast Cancer,Breast Tumors,Cancer of Breast,Breast Carcinoma,Cancer of the Breast,Human Mammary Carcinoma,Malignant Neoplasm of Breast,Malignant Tumor of Breast,Mammary Cancer,Mammary Carcinoma, Human,Mammary Neoplasm, Human,Mammary Neoplasms, Human,Neoplasms, Breast,Tumors, Breast,Breast Carcinomas,Breast Malignant Neoplasm,Breast Malignant Neoplasms,Breast Malignant Tumor,Breast Malignant Tumors,Breast Neoplasm,Breast Tumor,Cancer, Breast,Cancer, Mammary,Cancers, Mammary,Carcinoma, Breast,Carcinoma, Human Mammary,Carcinomas, Breast,Carcinomas, Human Mammary,Human Mammary Carcinomas,Human Mammary Neoplasm,Human Mammary Neoplasms,Mammary Cancers,Mammary Carcinomas, Human,Neoplasm, Breast,Neoplasm, Human Mammary,Neoplasms, Human Mammary,Tumor, Breast
D003287 Contrast Media Substances used to allow enhanced visualization of tissues. Radiopaque Media,Contrast Agent,Contrast Agents,Contrast Material,Contrast Materials,Radiocontrast Agent,Radiocontrast Agents,Radiocontrast Media,Agent, Contrast,Agent, Radiocontrast,Agents, Contrast,Agents, Radiocontrast,Material, Contrast,Materials, Contrast,Media, Contrast,Media, Radiocontrast,Media, Radiopaque

Related Publications

Samantha L Heller, and Linda Moy, and Sherlin Lavianlivi, and Melanie Moccaldi, and Sungheon Kim
April 2004, Breast (Edinburgh, Scotland),
Samantha L Heller, and Linda Moy, and Sherlin Lavianlivi, and Melanie Moccaldi, and Sungheon Kim
May 2024, Insights into imaging,
Samantha L Heller, and Linda Moy, and Sherlin Lavianlivi, and Melanie Moccaldi, and Sungheon Kim
May 2017, Journal of magnetic resonance imaging : JMRI,
Samantha L Heller, and Linda Moy, and Sherlin Lavianlivi, and Melanie Moccaldi, and Sungheon Kim
March 2018, European radiology,
Samantha L Heller, and Linda Moy, and Sherlin Lavianlivi, and Melanie Moccaldi, and Sungheon Kim
November 2011, Radiology,
Samantha L Heller, and Linda Moy, and Sherlin Lavianlivi, and Melanie Moccaldi, and Sungheon Kim
April 2008, Magnetic resonance in medicine,
Samantha L Heller, and Linda Moy, and Sherlin Lavianlivi, and Melanie Moccaldi, and Sungheon Kim
July 2023, Current medical imaging,
Samantha L Heller, and Linda Moy, and Sherlin Lavianlivi, and Melanie Moccaldi, and Sungheon Kim
November 2022, Medicine,
Samantha L Heller, and Linda Moy, and Sherlin Lavianlivi, and Melanie Moccaldi, and Sungheon Kim
December 2023, Journal of cancer research and therapeutics,
Samantha L Heller, and Linda Moy, and Sherlin Lavianlivi, and Melanie Moccaldi, and Sungheon Kim
February 2020, European radiology,
Copied contents to your clipboard!